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Resum (CAT)
Aquest treball té com a objectiu introduir el lector a la teoria K per C⇤-àlgebres

demostrant-ne dos dels seus resultats centrals coneguts: La periodicitat de Bott

i la successió exacta ćıclica de sis termes. Aquests dos resultats constitueixen

una eina essencial de cara al càlcul expĺıcit dels K -grups d’una C⇤-àlgebra, i han

estat utilitzats amb èxit en l’estudi de diverses faḿılies. De cara a enunciar-los,

ens desviem lleugerament de la literatura estàndard i introdüım la notació K 0,

que permet simplificar els resultats i definicions necessàries per entendre les seves

demostracions.

Abstract (ENG)
The aim of this work is to introduce the reader to C⇤-algebraic K -theory whilst

proving two of its main known results: Bott periodicity and the hexagonal exact

sequence. These constitute a determinant tool for the explicit computation of the

K -groups of a C⇤-algebra, and have been used succesfully to study a variety of

families. In order to state them, we deviate slightly from the standard literature

and introduce the notation K 0, which allows us to simplify the results and definitions

needed to understand their proofs.
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K -theory for C ⇤-algebras

1. Introduction

The development of C ⇤-algebraic K -theory was initiated in the early 1970s, when G.A. Elliott classified
the so-called approximately finite dimensional C ⇤-algebras by using their ordered K0 groups, see [2]. Since
then, C ⇤-algebraic K -theory has become an important tool in the treatment of operator algebras, and has
been used succesfully to classify a considerably large family of separable and simple C ⇤-algebras.

In analogy to the topological K -theory developed by Aityah–Hirzebruch, in C ⇤-algebraic K -theory one
defines a family of functors Kn from the category of C ⇤-algebras to that of abelian groups, thus assigning
to every C ⇤-algebra A a family of groups Kn(A). The computation of these groups, usually known as the
K -groups of the algebra, provides useful information on the structure of the sets of projections and unitaries
of A.

Towards this computation, and in contrast to algebraic K -theory, there exist a number of tools that
make the treatment of the K -groups of a C ⇤-algebra manageable. Amongst them, there are two that are
of particular importance: The first one, known as Bott periodicity, is the C ⇤-algebraic equivalent to the
periodicity obtained in topological K -theory, and states that all K -groups of even and odd subscripts are
isomorphic to K0 and K1, respectively; see [1, Ch. 9].

The second result, which is a consequence of the first one, allows us to construct a hexagonal exact
sequence from any exact sequence of C ⇤-algebras. In particular, the existence of such a sequence implies
that one can compute the K -groups of a C ⇤-algebra by studying the K -groups of one of its ideals and its
corresponding quotient; see [1, § 9.3].

Therefore, the aim of this work is to introduce the reader to C ⇤-algebraic K -theory whilst proving these
two results. More explicitly, for any exact sequence of C ⇤-algebras

0 // I
'

// A
�

// B // 0, (1)

we wish to obtain the associated hexagonal exact sequence

K1(I )
K1(')

// K1(A)
K1(�)

// K1(B)
�1
✏✏

K0(B)

�0
OO

K0(A)
K0(�)
oo K0(I ).

K0(')
oo

(2)

To this end, we will assume without loss of generality (see, for example, [4, § 1.1.5]) that (1) is of the form

0 // I i
// A ⇡

// A/I // 0, (3)

where I is an ideal of A and i ,⇡ are the usual inclusion and quotient mappings.

The remainder of this paper has been divided into three parts, where some familiarity with C ⇤-algebras
is assumed. All the C ⇤-algebraic background needed for these sections can be found in many textbooks;
see, for example, [3].

In Section 2 we recall the definitions of the K -functors as well as some of their properties. We also
introduce the notation K 0

n, which will allow us to shorten the definitions of this section and the proofs of
Section 3. As the aim of Section 2 is for the reader to get acquainted with the basics of K -theory, we omit
all the proofs.
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The index map, denoted by �1, is then defined in Section 3, where we first prove that the K 0-functors are
exact and invariant under homotopy. As these functors are equivalent to the K -functors, the construction
of the index map together with this fact gives us a six-term exact sequence which is not yet cyclic.

Finally, in Section 4 we prove Bott periodicity and construct the hexagonal exact sequence by closing
the sequence obtained in Section 3. Since the proofs of some of the preliminary lemmas in this section are
rather long and arduous, we only provide a reference for them.

2. An overview of C
⇤
-algebraic K-theory

In this first section we briefly review the concepts and results of C ⇤-algebraic K -theory that will be used in
the subsequent sections. All the proofs can be found in [4, 5]. Throughout this paper, A and B will denote
C ⇤-algebras and, given any two square matrices a, b over A, we will refer to the matrix diag(a, b) by a� b.

2.1 The projection group K0 and the unitary group K1

We begin our overview defining the first two K -groups. As we will later prove, these are the only ones up
to isomorphism.

Proposition 2.1. Let Pn(A) be the sets of projections in Mn(A) and denote by P1(A) their disjoint union.
Then, by writting p ⇠0 q if and only if p = vv⇤ and q = v⇤v for some rectangular matrix v , one gets that
(P1(A)/ ⇠0,�) is a commutative monoid with the class of 0 as its unit.

Definition 2.2. For any unital C ⇤-algebra A, the group K0(A) is defined to be the Grothendieck group of
the monoid above, where we denote the class of an element p 2 P1(A) by [p]0. If A does not have a unit,
we define the group K0(A) as the kernel of the map K0(⇡) : K0(Ã) ! K0(C), where K0(⇡)([p]0) = [⇡(p)]0
and ⇡ is the usual projection map from Ã to C applied entry-wise (here, we use Ã to denote the unitification
of A).

Remark 2.3. It can be shown that every element in K0(A) is of the form [p]0�[1n�0n]0 for some projection
p 2 P1(Ã) whose scalar part s(p) is 1n � 0n. Moreover, if A is unital, it follows from its construction that
every element in K0(A) is of the form [p]0 � [q]0 for some p, q 2 P1(A), where we can assume that both
projections are of the same size.

As A is equipped with a norm, we can study its induced topology. In particular, we say that two
elements a and b are homotopic in a subset S ⇢ A, in symbols a ⇠h b, if there exists a continuous path
in S going from a to b. For example, given two projections p, q homotopic in Pn(A), one can see that
[p]0 = [q]0. Conversely, if [p]0 = [q]0, then p � 0s ⇠h q � 0t for some positive integers s and t.

We will also say that two ⇤-homomorphisms '0 and '1 from A to B are homotopic if there is a
continuous map t 7! 't from [0, 1] to the ⇤-homomorphisms from A to B such that t 7! 't(a) is a
homotopy for each a 2 A. Moreover, two C ⇤-algebras A and B are said to be homotopic if there exist two
⇤-homomorphisms � and ' such that � � ' ⇠h idB and ' � � ⇠h idA.

Proposition 2.4. Let A be a unital C ⇤-algebra and consider the set U1(A) = [nUn(A), where Un(A)
denotes the set of all unitary n ⇥ n matrices over A. Then, the equivalence relation “u ⇠1 v if and only
if u � 1n ⇠h v � 1m in UN(A) for some suitable integers n, m, and N” makes (U1(A)/ ⇠1,�) into a
commutative group with the class of 1 as its unit.

3Reports@SCM 5 (2020), 1–10; DOI:10.2436/20.2002.02.18.



K -theory for C ⇤-algebras

Definition 2.5. Given a unital C ⇤-algebra A, the group K1(A) is the commutative group defined above,
where we refer to the class of a unitary u 2 U1(A) as [u]1. If A does not have a unit, we define
K1(A) := K1(Ã).

Remark 2.6. It can be proven that every element in K1(A) is of the form [u]1 with u 2 U+
1(Ã), where

U+
1(Ã) is the set of unitaries whose scalar part is of norm 1.

Example 2.7. It is easy to see that two elements p, q 2 P1(C) are equivalent under ⇠0 if and only if
dim(Im(p)) = dim(Im(q)). Thus, it follows that K0(C) ⇠= Z. Moreover, recall that a unitary u in a unital
C ⇤-algebra is homotopic to 1 in U(A) if and only if its spectrum is not T; see [4, Lem. 2.1.3(ii)]. Therefore,
as all unitaries in U1(C) have finite spectrum, they must be equivalent to 1 under ⇠1. This implies that
K1(C) = 0. One can also adapt these arguments to see that K0(B(H)) = K1(B(H)) = 0 for any separable
infinite dimensional Hilbert space H.

2.2 Suspension functor and higher index K-groups

Once the K0 and K1 groups have been defined, one can make use of the suspension functor S to define
two families of groups: the higher index K -groups and the K 0-groups. Even though these two families turn
out to be the same, the introduction of the K 0-groups allows us to simplify both the definitions and proofs
regarding the properties of the higher index K -groups.

Recall that the suspension functor S is an exact covariant functor mapping a C ⇤-algebra A to SA :=
{f 2 C (T,A) | f (1) = 0}, and a ⇤-homomorphism � : A ! B to the ⇤-homomorphism S� from SA to SB
defined as S�(f ) = � � f .

Definition 2.8. By using the notation S0 = id and Sn = Sn�1 � S , we define the higher index K -groups
Kn(A) = K1(Sn�1A) and the K 0-groups K

0
n(A) = K0(Sn(A)).

Now let � : A ! B be a ⇤-homomorphism. We denote by K
0
n(�) : K

0
n(A) ! K

0
n(B) the group homo-

morphism K
0
n(�)([p]0 � [s(p)]0) = [Sn�̃(p)]0 � [Sn�̃(s(p))]0. One can check that this definition makes K

0
n

into functors. A proof of the theorem below can be found in [5, Thm. 7.2.5].

Theorem 2.9. Given any C ⇤-algebra A, consider the map ✓A,n : Kn(A) ! K
0
n(A) defined as

✓A,n([u]1) = [w(1m � 0m)w
⇤]0 � [1m � 0m]0 , u 2 U+

m(Ŝn�1A),

where w is a homotopy between 12m and u � u⇤ in U2m(Sn�1A). Then, ✓A,n is an isomorphism for every
integer n � 1.

Definition 2.10. Given a ⇤-homomorphism � : A ! B , we define Kn(�) : Kn(A) ! Kn(B) as Kn(�) =
✓�1
B,n � K

0
n(�) � ✓A,n. Together with this definition, the K -groups also become functors.

3. Homotopy invariance and the index map

The goal of this section is to define the map �1 from (2) and prove that the two rows together with the
right column of (2) form an exact sequence. However, we will first show that the K

0
n functors are invariant

http://reportsascm.iec.cat4
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Eduard Vilalta Vila

under homotopy, as this is one of the main tools used in the explicit computation of the K groups of a
C ⇤-algebra. Note that, by their definition and Theorem 2.9, this will imply that the functors Kn are also
invariant under homotopy.

Theorem 3.1. Given two homotopic ⇤-homomorphisms '0 and '1 from A to B, we have that K
0
n('0) =

K
0
n('1), for every n � 0.

Proof. Fix n 2 N and let q be an element in Pk(gSnA) for some k . Then, write q as the sum q = p+↵1gSnA,k
with p 2 Mk(SnA) and ↵ 2 Mk(C). For every t 2 [0, 1], define the elements pt = Sn't(p) and

qt = ]Sn't(q), where t 7! 't is the homotopy from '0 to '1.

As ]Sn't is a ⇤-homomorphism, it follows that qt is a projection for every t. Moreover, one gets that
qt = pt + ↵1gSnB,k

and, consequently, that t 7! qt is continuous if and only if t 7! pt is continuous.

Now let �p : [0, 1]⇥ Tn ! A be the map defined as �(p)(t, (z1, ... , zn)) = pt(z1)(z2) · · · (zn), and note
that, for any two pairs (t1, ⇠1), (t2, ⇠2) 2 [0, 1]⇥ Tn, one gets

k�p(t1, ⇠1)� �p(t2, ⇠2)k  k't1(p(⇠1))� 't2(p(⇠1))k+ kp(⇠1)� p(⇠2)k.

Thus, since p is continuous and t 7! 't is a homotopy, we have that �p is also continuous. Furthermore,
as �p has compact support, the map is uniformly continuous.

It then follows that t 7! pt is continuous and that t 7! qt is a homotopy of projections. Therefore, one

gets [q0]0 = [q1]0 for any q 2 P1(gSnA), which implies the equality K0(]Sn'0) = K0(]Sn'1), from which
the desired result follows.

Example 3.2. Let X be a compact, Hausdor↵, and contractible topological space. Then, the K0 and K1

groups of the C ⇤-algebra C (X ,C) are isomorphic to Z and 0, respectively, as C (X ,C) is homotopic to C.
Recall that X is contractible if there exists a point x0 and a continuous map c : X ⇥ [0, 1] ! X such that
c(x , 0) = x and c(x , 1) = x0 for every x 2 X . Then, a pair of functions giving the homotopy between
C (X ,C) and C are z 7! z1C(X ,C) and f 7! f (x0). For more details, see [4, Ex. 3.3.6].

Proposition 3.3. For any exact sequence of the form (3), the induced sequence

Kn(I )
Kn(i)

// Kn(A)
Kn(⇡)

// Kn(A/I ) (4)

is exact for every n.

Proof. As we have previously noted, it follows from their definition and Theorem 2.9 that proving the result
for K

0
n is equivalent to proving it for Kn. Moreover, by using the functoriality and exactness of S , one can

see that the diagram

K
0
n(I ) //

✏✏

K
0
n(A) //

✏✏

K
0
n(A/I )

✏✏

K0(Im(Sni)) // K0(SnA) // K0(SnA/Im(Sni))

is commutative and has isomorphisms as columns, for every n � 0. Thus, we only need to prove that
ker(K0(⇡)) ⇢ Im(K0(i)), as we can restrict ourselves to n = 0 and the other inclusion is clear.

5Reports@SCM 5 (2020), 1–10; DOI:10.2436/20.2002.02.18.



K -theory for C ⇤-algebras

Now, given an element [p]0 � [s(p)]0 in ker(K0(⇡)), find a unitary u 2 UN(gA/I ) such that, for suitable
integers n, k ,N, u(⇡̃�1n�0k) = s(p)�1n�0k . Then, by taking a unitary w homotopic to 12N in U2N(A)
such that ⇡̃(w) = u � u⇤, we can define the projection

r = w(p � 1n � 0k+N)w
⇤.

As ⇡̃(r) 2 M1(C1A) by construction, it follows that r 2 M1(Ĩ ). In particular, we have that

[p]0 � [s(p)]0 = [r ]0 � [s(r)]0 2 Im(K0(i)),

as required.

Theorem 3.4. For any exact sequence of the form (3), there exists a group homomorphism �1 such that
the following sequence is exact:

K1(I )
K1(i)

// K1(A)
K1(⇡)

// K1(A/I )
�1
✏✏

K0(A/I ) K0(A)
K0(⇡)
oo K0(I ).

K0(i)
oo

(5)

Proof. Given an element [u]1 2 K1(A/I ) with u 2 U+
k (gA/I ), we define its image through the index map

�1 as
�1([u]1) = [w(1n � 0k)w

⇤]0 + [1n � 0k ]0,

where v 2 U+
k (gA/I ) is such that u � v ⇠h 1n+k in U+

k (gA/I ), and w is a unitary lift of u � v . It can be
proven that �1 is indeed a well defined group homomorphism; see, for example, [5, Prop. 8.1.3].

Then, it follows from Proposition 3.3 that we only need to prove the equalities Im(�1) = ker(K0(i)) and
ker(�1) = Im(K1(⇡)). Moreover, note that the inclusions Im(�1) ✓ ker(K0(i)) and Im(K1(⇡)) ✓ ker(�1)
are clear.

Thus, let [u]1 2 ker(�1) with u 2 U+
m(gA/I ) for some m, and let w be a unitary lift of u � u⇤. As

�1([u]1) = 0, we can find an integer k and a matrix v 2 M2(k+2m)(Ĩ ) such that vv⇤ = 12n � q � 1k � 0n
and v⇤v = 12n � (1m � 0m)� (1k � 0n), where q = w(1m � 0m)w⇤ and n = k + 2m.

By using the previous two equalities together with vv⇤v = v , it is easy to check that ⇡̃(v) = 0m � X
for some X 2 M2n�m(C1Ã). Therefore, there exists a complex (2n + m) ⇥ (2n + m) matrix U such that
⇡̃(qw � v) = u � U. As U ⇠h 12n+m, it follows that

[u]1 = [u]1 + [U]1 = K1(⇡)([qw � v ]1) 2 Im(K1(⇡)).

Now let x = [p]0 � [1n � 0n]0 2 ker(K0(i)) with p 2 P2n(Ĩ ). Then, there exists an integer k 2 N for
which p � 1k � 0m ⇠0 (1n � 0n)� 1k � 0m =: sk , with m = 3(2n + k). Moreover, we can find a complex
matrix P such that PskP⇤ = 1n+k � 0n+m and, consequently, we have

q := P(p � 1k � 0m)P
⇤ ⇠0 1n+k � 0n+m =: d .

Take w 2 U+
1(Ã) such that wqw⇤ = d and note that ⇡̃(w) commutes with d . It follows that ⇡̃(w) = a�b

for some a 2 U+
n+k(Ã). Finally, as w is a unitary lift of a� b, we get

x = [q]0 � [d ]0 = [wdw⇤]0 � [d ]0 = �1(⇡̃(a)) 2 Im(�1),

as desired.

http://reportsascm.iec.cat6
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4. Bott periodicity and the hexagonal exact sequence

We begin this section by noting that Mn(fSA) can be identified with the set of continuous functions
f 2 C (T,Mn(Ã)) such that f (1) 2 Mn(C1Ã). In particular, we can write

Un(fSA) = {f 2 C (T,Un(Ã)) | f (1) 2 Mn(C1Ã)}.

By using this identification, we can now define the Bott map. What follows is a combination of [4, Ch. 11]
and [5, Ch. 9]:

Definition 4.1. Let A be a unital C ⇤-algebra and take p 2 Pn(A). We define fp 2 Un(fSA) as the map
from T to A such that fp(z) = zp + (1n � p). The Bott map �A : K0(A) ! K1(SA) is then defined as
�A([p]0 � [q]0) = [fpf ⇤q ]1 for any element [p]0 � [q]0 in K0(A).

Remark 4.2. It can be proven that �A is a well defined homomorphism; see, e.g., [4, § 11.1].

If A is not unital, we define the Bott map of A to be the only homomorphism for which the following
diagram is commutative:

0 // K0(A) //

�A
✏✏

K0(Ã)
//

�Ã
✏✏

K0(C)oo

�C
✏✏

// 0

0 // K1(SA) // K1(SÃ)
// K1(SC)oo

// 0.

In particular, it follows that we only need to prove that the Bott map is an isomorphism in the unital case.
Thus, we will assume from now on that A has a unit.

We will first prove that �A is surjective. Let GL0(Mn(A)) be the set of invertible n ⇥ n matrices that
are homotopic to the identity. Then, define the following sets:

Invn0 := C (T,GL0(Mn(A))),

Polnm := {f 2 Invn0 | f(z) =
mX

i=0

aiz
i , ai 2 Mn(A)},

Trignm := {f 2 Invn0 | f(z) =
mX

i=�m

aiz
i , ai 2 Mn(A)}.

Remark 4.3. One can check that Un(fSA) is a subset of Invn0 for every n, and that, if two unitaries are

homotopic in Invn0, then they are also homotopic in Un(fSA); see [4, § 11.2].

As we have already mentioned in the introduction, we omit the proof of the next lemma.

Lemma 4.4 ([5, Lem. 9.2.3–9.2.7]). For every unital C ⇤-algebra A and every integer n 2 N, we have:

(i) for every f 2 Invn0, there exists an integer m and an element h 2 Trignm such that f ⇠h h in Invn0;

(ii) for every integer m there exists a continuous map µn
m from Polnm to Polmn+n

1 such that µn
m(f ) is

homotopic to f � 1mn in Invn0, for every f ;

7Reports@SCM 5 (2020), 1–10; DOI:10.2436/20.2002.02.18.
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(iii) for any degree one polynomial f 2 Poln1 there exists an element �(f ) of the form fp such that
f ⇠h �(f ) in Poln1; moreover, the map f 7! �(f ) is continuous.

Proposition 4.5. The Bott map is surjective.

Proof. Let [f ]1 2 K1(SA) with f 2 Un(fSA). By Lemma 4.4(1), we can find an element h 2 Trignm such

that f ⇠h h in Invn0. As z�N � 1M�1 ⇠h f ⇤1N�0M�N
in UM(fSA) for every pair N,M such that N  M, we

get (hzN)z�N � 1M ⇠h (hzN � 1M)f ⇤pN for every N  M, and where pN = 1N � 0M�N .

In particular, if N is large enough, hzN is polynomial. Thus, for any such N, Lemma 4.4(2) ensures
that we can find a degree one polynomial r such that hzN � 1t ⇠h r for some t. Moreover, it follows from
Lemma 4.4(3) that there exists some element fp homotopic to r .

By now adding some extra 1’s in the diagonal, we have that f �1M+nt ⇠h fp�0M f
⇤
pN and, consequently,

that �A([p]0 � [pN ]0) = [f ]1.

We now prove that �A is injective. Once again, we will omit the proof of the following lemma.

Lemma 4.6 ([5, § 9.1.2 & Lem. 9.2.10]). For every unital C ⇤-algebra A and every integer n 2 N, we have:

(i) the map ⇡ : {fp | p 2 Pn(A)} ! Pn(A) sending an element fp to p is continuous;

(ii) for any homotopy f 7! ft in Invn0, there exists a positive integer N such that f 7! ft can be uniformly
approximated by a homotopy c 7! ct in TrignN that is piecewise linear. In particular, if f0, f1 2 TrignN,
one can set c0 = f0 and c1 = f1.

Proposition 4.7. The Bott map is injective.

Proof. Let [p]0 � [q]0 2 K0(A) be such that �A([p]0 � [q]0) = 0 or, equivalently, such that [fpf ⇤q ]1 = 0.
Then, by possibly adding some zeros diagonally, we have that fp ⇠h fq. By Lemma 4.6(2), we can find
a polynomial homotopy between zN fp and zN fq for some integer N. Moreover, once again adding some
zeros and ones diagonally, and using Lemma 4.4(2,3), we obtain a homotopy t 7! fpt such that p0 = p and
p1 = q. Finally, Lemma 4.6(1) gives a homotopy between p and q, from which we get that [p]0 = [q]0
and, therefore [p]0 � [q]0 2 ker(�A).

Combining Propositions 4.5 and 4.7 above, one gets the desired result:

Theorem 4.8. For any C ⇤-algebra A, the Bott map �A is an isomorphism between the groups K0(A) and
K2(A). Consequently, all the K-groups Kn(A) of even subindexes are isomorphic to K0(A), and those with
odd subindexes are isomorphic to K1(A).

Other proofs of this result are indeed possible, such as the recent one in [6]. In it, Voiculescu’s almost
commuting matrices are used to define a homomorphism ↵A : K1(SA) ! K0(A), which is then shown,
with the help of Atiyah’s rotation trick, to be the mutual inverse of �A (the author thanks the anonymous
referee for this reference).

With Bott periodicity at hand, we can now construct the hexagonal exact sequence.
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Theorem 4.9. For any exact sequence of the form (3), there exists a group homomorphism �0 such that
the following hexagonal sequence is exact

K1(I )
K1(i)

// K1(A)
K1(⇡)

// K1(A/I )

�1
✏✏

K0(A/I )

�0

OO

K0(A)
K0(⇡)
oo K0(I ).

K0(i)
oo

Proof. Given an exact sequence 0 ! I ! A ! A/I ! 0, consider the suspended sequence

0 ! SI ! SA ! S(A/I ) ! 0

and its corresponding index �
0
1 from Theorem 3.4. Then, define �0 as the composition ✓�1

I ,1 � �
0
1 � �A/I ,

where ✓�1
I ,1 is the isomorphism from Theorem 2.9.

K2(A/I )

✓�1
I ,1 ��

0
1

✏✏

K1(I )
K1(i)

// K1(A)
K1(⇡)

// K1(A/I )

�1
✏✏

K0(A/I )

�A/I

??

K0(A)
K0(⇡)
oo K0(I )

K0(i)
oo

By Theorem 3.4, we only need to prove that the sequence is exact at K1(I ) and K0(A/I ). To do this,
simply note that the following diagram is commutative

K0(A)
K0(⇡)

//

OO

�A

✏✏

K0(A/I )
�0

//

OO

�A/I

✏✏

K1(I )
K1(i)

//

OO

✓I
✏✏

K1(A)
OO

✓A
✏✏

K1(SA)
K1(S⇡)

// K1(S(A/I ))
�1

// K0(SI )
K0(Si)

// K0(SA),

and that all of its columns are isomorphisms. As the second row is exact by Theorem 3.4, so is the first
one.

Example 4.10. Let H be an infinite dimensional separable Hilbert space and consider the Calkin algebra
Q(H) = B(H)/K (H), where K (H) is the algebra of compact operators on H. Then, the exact sequence

0 // K (H) i
// B(H) ⇡

// Q(H) // 0

induces, by Theorem 4.9, the hexagonal exact sequence

K1(K (H))
K1(i)

// K1(B(H))
K1(⇡)

// K1(Q(H))
�1
✏✏

K0(Q(H))

�0
OO

K0(B(H))
K0(⇡)
oo K0(K (H)).

K0(i)
oo

Moreover, recall from Example 2.7 that K0(B(H)) = K1(B(H)) = 0. Thus, �0 and �1 are isomorphisms.

By using that the K -groups are stable (see [4, Prop. 6.4.1 & Prop. 8.2.8]), one can also see that
K0(K (H)) ⇠= K0(C) ⇠= Z and that K1(K (H)) ⇠= K1(C) = 0. Therefore, the K0 and K1 groups of the
Calkin algebra are isomorphic to 0 and Z respectively.
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normal continuity across element sides in weak form. The method is developed for
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A C0 IPM for 4th order PDEs

1. Introduction

There are two main strategies for the numerical solution of 4th order PDEs. The first one consists on con-
sidering an approximation space with C1 continuity to discretize a weak form involving 2nd order derivatives.
The main drawback of this approach is that the definition of C1-continuous approximations on non-cartesian
meshes, such as the ones necessary to adapt to non-rectangular domains, is really cumbersome. Thus, these
approximations are limited to the solution of problems in rectangular domains or in combination with a
technique for embedded domains; see for instance [3].

An alternative is splitting the 4th order PDE in two 2nd order PDEs, allowing the use of C0 Finite Element
(FE) approximations. However, the approximation spaces for the primal unknown and the additional
unknown must fulfil some conditions for stability that, again, lead to approximation spaces with cumbersome
definitions, and di�cult extension to high-order approximations; see for instance [4].

A not so common approach is considering a modified weak form suitable for standard C0 FE approxi-
mations, imposing continuity of the derivative in weak form. This is the strategy considered in this work.

The developed formulation is based on the ideas of the Interior Penalty Method (IPM) [1], which
considers discontinuous approximations and imposes C0 continuity in weak form, in the context of 2nd

order PDEs. Here, the same ideas are applied for 4th order PDEs, but considering C0 approximations
and imposing the continuity of the derivative in weak form. The resulting weak form involves second
order derivatives, two di↵erent types of Dirichlet and Neumann boundary conditions and punctual forces
on corners of the boundary. It coincides with the one proposed and analyzed in [2], but without some
limitations for the boundary conditions. The derivation here is based on the use of the surface divergence
theorem, instead of considering a limit from rounded corners to sharp corners, leading to a more natural
understanding of the contribution of interior and boundary corners (vertices). In addition, a convergence
study based on numerical experiments, assessing the real applicability of the method, is included here,
and an strategy based on an eigenvalue problem is also proposed for the estimate of the value for the
stabilization parameter to ensure coercivity.

Einstein notation (repeated indexes sum over) is assumed in the whole text.

2. A C0 Interior Penalty Method for Kircho↵ plates

The equations modelling the behaviour of a plate with the Kircho↵ model are

@2�ij(u)

@xi@xj
= f on⌦

u = g1 on� 1
D

@u

@n
= g2 on� 2

D

t(u) = tn on� 1
N

r(u) = rn on� 2
N

jk(u) = j
ext
k on Vk 2 VN ,

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)
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Figure 1: Left and right tangent and normal vectors at a corner of the domain.

where

�ij(u) = Cijkl
@2

u

@xk@xl

t(u) =

✓
@�ij(u)

@xi
�r⌧ · (n)ni�ij(u)

◆
nj +r⌧ · (�(u) · n)

r(u) = n · �(u) · n
jk(u) = ⌧ L

k · �(u) · nLk + ⌧R
k · �(u) · nRk ,

(2)

�1D [ �1N = �2D [ �2N = @⌦, VN are the vertices in the boundary in� 1
N , n is the exterior unitary normal

vector, ⌧ is the tangent vector, and r⌧ · f := ⌧k@fk/@⌧ . At each vertex, superscripts L and R refer to the
left and right sides that meet there; see Fig. 1

In these equations u is the vertical displacement on the plate, the 4th order tensor C depends on
the material, equation (1a) is the 4th-order PDE stating equilibrium with the vertical applied load f ,
equations (1b) and (1c) are the first and second Dirichlet conditions, equations (1d) and (1e) are the first
and second Neumann conditions, and equation (1f) imposes punctual forces on the exterior vertices where
the displacement is unknown. The boundary conditions (1c), (1e), and (1f), that may be not intuitive, can
be justified from mechanical reasonings, or can be derived from the weak form of (1a).

Let us consider now a partition of ⌦ in subdomains⌦ e , that will in fact be the elements, and definitions
for broken domain and boundaries, such as b⌦ =

S
e ⌦e . Then, the problem can be stated as

@2�ij(u)

@xi@xj
= f on b⌦

u = g1 on c�1D
@u

@n
= g2 on c�2D

t(u) = tn on c�1N
r(u) = rn on c�2N
jk(u) = j

ext
k on Vk 2 VN

JunK = 0 on�

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

(3g)
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s
@u

@n

{
= 0 on�

Jt(u)K = 0 on�

Jnr(u)K = 0 on�
X

e2Ek

j
e
k (u) = 0 on Vk 2 Vint ,

(3h)

(3i)

(3j)

(3k)

where � is the union of all interior sides� f ,

� =

"
[

e

@⌦e

#
\ @⌦ =

[

f

�f , (4)

Ek is the set of elements touching the vertex Vk , Vint is the set of all interior vertices (i.e., vertices in �),
and the jump operator is defined on each side� f as JaK = a

L + a
R , with a

L and a
R being the values from

the elements⌦ L and⌦ R sharing the side. Note that the jump operator is always used including the normal
vector, for instance, JunK = u

LnL + u
RnR = (uL � u

R)nL, thus, it is zero for a continuous function.

Equations (3g) and (3h) impose continuity of the displacement and its normal derivative. And equa-
tions (3i), (3j), and (3k) impose equilibrium of internal forces across sides between elements and on internal
vertices.

Now, multiplying equation (3a) by an arbitrary function v , integrating over any element⌦ e and using
twice integration by parts leads to

Z

⌦e

vf d⌦ =

Z

⌦e

@2
v

@xi@xj
�ij(u) d⌦�

Z

@⌦e

@v

@xi
�ij(u)nj dS +

Z

@⌦e

v
@�ij(u)

@xj
ni dS (5)

Now, the derivative in the first boundary integral can be split in normal and tangential derivative as
@v
@xi

= ⌧i
@v
@⌧ + ni

@v
@n , and the integral for the tangential derivative can be expressed as

Z

@⌦e

⌧i
@v

@⌧
�ij(u)nj dS =

Z

@⌦e

r⌧ · (v�(u) · n) dS �
Z

@⌦e

vr⌧ · (�(u) · n) dS ,

or, using the surface diverge theorem,

Z

@⌦e

⌧i
@v

@⌧
�ij(u)nj dS =

Z

@⌦e

r⌧ ·(n)v n ·�(u) ·n dS+
#sides ⌦eX

s=1

v [⌧ · �(u) · n]end0 �
Z

@⌦e

vr⌧ ·(�(u) ·n) dS ,

where [ · ]end0 denotes the value at the end minus the value at the beginning of the side, for each side of
the element. Thus, equation (5) can now be written as

Z

⌦e

vf d⌦ =

Z

⌦e

@2
v

@xi@xj
�ij(u) d⌦

+

Z

@⌦e

v

✓
@�ij(u)

@xi
�r⌧ · (n)ni�ij(u)

◆
nj +r⌧ · (�(u) · n)

�
dS

�
Z

@⌦e

@v

@n
[ni�ij(u)nj ] dS �

#vertices @⌦eX

k=1

v

⇣
⌧ L
k�(Vk)n

L
k + ⌧R

k �(Vk)n
R
k

⌘
,

(6)
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Figure 2: Left and right tangent and normal vectors for a side� f inside the mesh, and left and right tangent
and normal vectors for an interior vertex of an arbitrary element⌦ e inside the mesh.

where the L and R indices refer to the values at the vertices from the left and right sides, and the tangent
vectors ⌧ L,R

k point outward on the vertex for each side; see Fig. 2, right. Now, applying Definitions (2),
equation (6) becomes

Z

⌦e

vf d⌦ =

Z

⌦e

@2
v

@xi@xj
�ij(u) d⌦+

Z

@⌦e

vt
e(u) dS �

Z

@⌦e

@v

@n
r
e(u) dS �

#vertices @⌦eX

k=1

vj
e
k (u), (7)

where a superscript e remarks that the value is taken from element⌦ e . Summing (7) for all elements,

Z

b⌦
vf d⌦ =

Z

b⌦

@2
v

@xi@xj
�ij(u) d⌦+

Z

@⌦
vt(u) dS �

Z

@⌦

@v

@n
r(u) dS

+

Z

�
v Jt(u)K dS �

Z

�


@vL

@nL
r
L(u) +

@vR

@nR
r
R(u)

�
dS

�
X

Vk2Vint

v

X

e2Ek

j
e
k (u)�

X

Vk2Vext

v

X

e2Ek

j
e
k (u),

where Vint, Vext are the set of interior and exterior vertices, respectively. Now, using the identity

@vL

@nL
r
L(u) +

@vR

@nR
r
R(u) =

s
@v

@n

{
{r(u)}+ {rv} · Jnr(u)K ,

with the mean operator {a} := 1
2

�
a
L + a

R
�
, and the equilibrium equations (3i), (3j), and (3k), leads to

Z

b⌦
vf d⌦ =

Z

b⌦

@2
v

@xi@xj
�ij(u) d⌦+

Z

@⌦
vt(u) dS�

Z

@⌦

@v

@n
r(u) dS�

Z

�

s
@v

@n

{
{r(u)} dS�

X

Vk2Vext

v

X

e2Ek

j
e
k (u).

Finally, replacing the Neumann boundary conditions, (1d), (1e), and (1f), imposing the first Dirichlet
boundary condition in strong form (that is, (1b) and, consequently v = 0 on� 1

D), and adding some
integrals with null sum (as a consequence of the C1 continuity of the solution (3h) and the second Dirichlet
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boundary condition (1c)), we get the final weak form: find u 2 H2(b⌦) \ C0(⌦) such that u = g1 on� 1
D

and a(u, v) = `(v), for all v 2 H2(b⌦) \ C0(⌦) such that v = 0 on� 1
D , where

a(u, v) =

Z

b⌦

@2
v

@xi@xj
�ij(u) d⌦

�
Z

�

s
@v

@n

{
{r(u)} dS �

Z

�
{r(v)}

s
@u

@n

{
dS + �

Z

�

s
@v

@n

{ s
@u

@n

{
dS

�
Z

�2D

@v

@n
r(u) dS �

Z

�2D

r(v)
@u

@n
dS + ↵

Z

�2D

@v

@n
@u

@n
dS ,

(8a)

`(v) =

Z

b⌦
vf d⌦�

Z

�1N

vtn dS +

Z

�2N

@v

@n
rn dS +

X

Vk2VN

vj
ext
k

�
Z

�2D

r(v)g2 dS + ↵

Z

�2D

@v

@n
g2 dS .

(8b)

The terms added to the weak form recover symmetry and coercivity of the bilinear form, provided that
parameters � and ↵ are large enough. They also weakly enforce continuity of the normal derivative across
elements interior sides (continuity along sides is given by the C0 continuity), and the second Dirichlet
boundary condition. In fact, the parameters � and ↵ act as penalty parameters, but di↵erently to a non-
consistent penalty formulation, moderate values of the parameters, of order O(h�1), provide convergence
for any degree of approximation, avoiding the typical ill-conditioning problems of non-consistent penalty
methods. Proper values for the parameters can be obtained solving an eigevalue problem, as commented
in Section 3.

The methodology considered here for the weak imposition of interface conditions and boundary condi-
tions is inspired by the Interior Penalty Method [1], developed in the context of discontinuous approximations
to weakly impose C0 continuity, and on Nitsche’s method [6], developed for Dirichlet boundary conditions,
here applied for the second Dirichlet boundary condition. Both methods are well known in the context of
second-order PDEs. The di�culties for its application with fourth-order PDEs have been overcome here
thanks to the use of the surface divergence theorem.

The FE solution can now be obtained replacing the classical C0 FE approximations in the weak form
and solving the resulting linear system of equations for the nodal values.

3. Analysis of the � parameter

A study of the value of parameter � ensuring the coercivity of the bilinear form (8a), which can be easily
replicated for parameter ↵, is presented next. It is inspired in the analysis developed in [3] for embedded
domains. We consider the problem with� 2

N = @⌦ (i.e., without second Dirichlet boundary conditions),

and a FE space V
h
0 , which discretizes the space of functions in H2(b⌦)\ C0(⌦) with null value on� 1

D . The
matrix resulting from the discretization will be positive definite if a(v , v) > 0 for all non-null v 2 V

h
0 .
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Using Cauchy–Schwartz inequality, the bilinear form can be bounded as

a(v , v) =

Z

b⌦

@2
v

@xi@xj
�ij(v) d⌦� 2

Z

�

s
@v

@n

{
{r(v)} dS + �

Z

�

s
@v

@n

{2

dS

�
Z

b⌦

@2
v

@xi@xj
�ij(v) d⌦� 2

����

s
@v

@n

{����
L2(�)

k{r(v)}kL2(�) + �

����

s
@v

@n

{����
2

L2(�)

.

Now, let us consider a constant c (depending only on the considered FE discretization space) such that

k{r(v)}k2L2(�)  c
2
Z

b⌦

@2
v

@xi@xj
�ij(v) d⌦ 8v 2 V

h
0 . (9)

Then, using Young’s inequality
⇣
ab  a2

2" +
"
2b

2 8a, b, " > 0
⌘
, we have

a(v , v) �

1� c

2

"

� Z

b⌦

@2
v

@xi@xj
�ij(v) d⌦+ [� � "]

����

s
@v

@n

{����
2

L2(�)

(10)

for any " > 0. Thus, the matrix will be positive definite if � > c
2.

In practice, � can be taken slightly larger than the largest eigenvalue of the generalized eigenvalue
problem KV = �MV, being M and K the matrices corresponding to the discretization of

R
b⌦

@2v
@xi@xj

�ij(u) d⌦

and
R
� {r(v)} {r(u)} dS , respectively. Moreover, under nested mesh refinement, with characteristic element

size h, the matrices M and K scale as h
�3 and h

�2, respectively, thus, the maximum eigenvalue (and
parameter �) scales as h�1.

4. Numerical Experiments

4.1 Convergence and sensitivity to � parameter

As commented in the introduction, [2] presents a theoretical convergence analysis of the formulation valid
for smooth boundaries (without corners) or pure Dirichlet boundary conditions. The conclusion of the
analysis is that the method is convergent for large enough parameter �, but too large values may lead
to suboptimal convergence. To assess the applicability of the method in real computations, the accuracy
and convergence of the numerical solution of (1a), with boundary conditions (1b) and (1e) in the whole
boundary, is tested next with

�ij(u) =
⌧3

12

✓
2µ

@2
u

@xi@xj
+ �

@2
u

@xk@xk
�ij

◆
,

and material parameters ⌧ = � = µ = 1, in a square domain ⌦ = [0, 1]2. The body force f , the Dirichlet
boundary value g1 and the second Neumann boundary value rn are chosen in accordance with the analytical
solution u(x , y) = x

4
y . Note that with this boundary conditions, the method depends only on �, and not

on the parameter associated to second Dirichlet boundary conditions ↵.

Fig. 3 shows the evolution of the L
2 error of the displacement under uniform refinement with charac-

teristic element size h. Optimal convergence would lead to errors ||u � u
h||L2 = O(hp+1) for degree of
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Figure 3: Convergence plots for di↵erent values of � and di↵erent degrees p. The numbers indicate the
slopes of the segments.
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approximation p, which would correspond to slope p + 1 in the plots. As expected, for degree p = 1, 2,
the approximation space is not rich enough to weakly impose continuity of the derivatives and at the same
time properly approximate the solution. This kind of locking leads to poor accuracy and convergence.
However, for degree p � 3, a reasonably large range for � ((1 � 100)⌧3/h for p = 3) provides optimal
convergence. Higher values of � lead to slightly suboptimal convergence, but still provide accurate results
and good convergence. Much higher values of � are not recommended mainly because they may lead to a
very ill-conditioned matrix, but also because we expect a continuous degradation in the convergence and
accuracy due to the locking associated to a too strong imposition of the continuity of the derivative.

Thus, in practice, the recommendation is using a value of � slightly larger than the one corresponding
to the maximum eigenvalue of the problem in Section 3. It is also worth noting that, assuming material
parameters � and µ constant or in a small range, M scales as ⌧3 h�2, K scales as ⌧6 h�3, and, therefore,
the maximum eigenvalue scales as ⌧3/h. Consequently, if the eigenvalue problem is solved for a particular
mesh and a particular value of ⌧ , the value for � for finer nested meshes, or other values of ⌧ , can be
estimated without solving the eigenvalue problem.
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Figure 4: Condition number for degrees p = 1, ... , 4, and for two di↵erent values of �, varying the element
size h.

Fig. 4 shows the condition number of the matrix corresponding to the discretization of the problem for
two di↵erent values of �, both above the bound for positiveness of the matrix. As expected, the condition
number increases when increasing �. In addition, we observe an increase in the condition number as
O(h�4), that is the expected behaviour for the numerical solution of a fourth-order PDE, regardless of the
discretization method.

4.2 Plate under uniform distributed load

A more realistic problem is solved in this section to demonstrate the applicability of the proposed method:
a plate under a uniformly distributed applied load of f = 100Pa. In this case, the material parameters are
µ = E/(2(1 + ⌫)) and � = ⌫E/(1� ⌫2), with Young’s modulus E = 200 · 109Pa, Poisson’s ratio ⌫ = 0.28
and thickness of the plate ⌧ = 0.001m, corresponding to a thick steel plate taken from [5]. The problem is
solved on the p = 4 mesh depicted in Fig. 5, discretizing a plate of 1⇥ 1 meters. The considered penalty
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Figure 5: FE mesh. Blue dots are nodes for the p = 4 approximation.

parameters are � = ↵ = 10⌧3µ/h = 781.25/h with element size h = 0.125m. Fig. 6 shows the solution
for a simply supported plate (left) and a clamped plate (right). As expected, deformations are much larger
for the simply supported plate.

Figure 6: Solution of the problem with distributed load for a simply supported plate (left) and a clamped
plate (right).

In both cases the first boundary condition is u = 0 on @⌦. The second boundary condition is rn(u) = 0
(Neumann) for the simply supported plate, and @u/@n (Dirichlet) for the clamped plate. The null normal
derivative on the boundary can be clearly observed in the right solution, corresponding to the clamped
plate.

5. Conclusions and final remarks

A method for the solution of 4th-order PDEs, with standard C0 FE approximations, has been proposed.
The method has been developed and tested for the solution of the equations of Kircho↵ plates. It is based
on a formulation that weakly imposes C1 continuity across element sides. Numerical experiments are in
agreement with the theoretical analysis in [2]: a large enough penalty parameter � is needed to ensure
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coercivity of the bilinear form, and convergence, but, on the other hand, too large � parameters may lead
to suboptimal convergence. However, the numerical experiments show that a wide range of � parameter,
within 3 orders of magnitude of di↵erence, provides optimal convergence for degree p � 3, demonstrating
the robustness of the method in practice. In fact, even for very large parameters, that should in practice not
be considered to avoid ill-conditioning, the loss of optimal convergence is not catastrophic, since accurate
results are still obtained.

The method is promising for the solution of other problems modelled by 4th-order PDEs, such as the
ones modelling strain-gradient elasticity or flexoelectricity, overcoming the inconveniences or limitations of
other techniques. Di↵erently to B-spline approximations or Hermite interpolants, the discretization with
standard FE allows the use of non-cartesian meshes, fitting to the boundary of non-rectangular domains,
without the need to use a technique for embedded domains in non-fitted meshes, and avoiding the typical
ill-conditioning problems related to the so-called cut elements. On the other hand, standard C0 FEs are easy
to define and implement for any degree, di↵erently to mixed approximations whose definition is cumbersome
and not developed for high-order approximations and, in addition, involve additional unknowns increasing
the computational cost.

In the next future, we aim to apply the same methodology to other 4th-order PDEs, and study its
applicability and robustness in real applications of interest.
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von teilräumen, die keinen randbedingungen un-
terworfen sind”, Abhandlungen aus dem mathe-

matischen Seminar der Universität Hamburg 36
(1971), 9–15.

21Reports@SCM 5 (2020), 11–21; DOI:10.2436/20.2002.02.19.





AN ELECTRONIC JOURNAL OF THE
SOCIETAT CATALANA DE MATEMÀTIQUES
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nul, pel que es conjectura que és redüıt, Cohen–Macaulay i normal. Demostrarem
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Scheme of commuting matrices

1. Introduction

The aim of this work is to study the scheme of pairs of n⇥ n matrices over an algebraically closed field K
with vanishing commutator.

Definition 1.1. Let K be an algebraically closed field. For any integer n � 1, consider the scheme associated
to the following set with the natural scheme structure,

Xn = {(A,B) 2 Mat(n,K )⇥2
| [A,B] = 0},

where [A,B] = AB�BA, and we consider Mat(n,K )⇥2 as an a�ne 2n2-dimensional space, where A and B
are generic matrices. Throughout the text, we refer to this scheme as the commuting scheme1 which we will
also denote as Xn. Its reduced associated scheme is usually referred to as the commuting variety (see [7],
[10], [16]) or the variety of commuting matrices.

Equivalently, Xn = SpecRn/In where Rn = K [{ai ,j , bi ,j}1i ,jn], for the matrices A = (ai ,j)1i ,jn,
B = (bi ,j)1i ,jn, and the ideal In = (fi ,j)1i ,jn is generated by

fi ,j =

8
>>>>><

>>>>>:

nP
k=1
k 6=i

(ai ,kbk,i � ak,ibi ,k) if i = j ,

nP
k=1

k 62{i ,j}

(ai ,kbk,j � ak,jbi ,k) + ai ,j(bj ,j � bi ,i )� bi ,j(aj ,j � ai ,i ) if i 6= j .

Remark. {fi ,j}i 6=j [ {fi ,i}i 6=k is a generating set of In for any k and has a minimal number of generators.

An important property of Xn, first proven by Motzkin and Taussky [8] (as well as a bit later by
Gerstenhaber [2]), is the following theorem:

Theorem 1.2. Xn is irreducible and of dimension n2 + n for all n � 1.

Moreover, there is a long standing conjecture atributed to M. Artin and M. Hochster2 (cf. [6], [11],
[7], [1], [12], [13]) on the properties of Xn:

Conjecture 1.3. Xn is reduced, Cohen–Macaulay and normal for all n � 1.

This conjecture is actually a specific case, for g = gln, of the following one:

Conjecture 1.4. Let g be a reductive Lie algebra. Then, the associated scheme to

C(g) = {(a, b) 2 g | [a, b] = 0}

is reduced, irreducible, Cohen–Macaulay and normal.

1We use this nomenclature as a parallelism with the use of commuting variety for the reduced associated scheme.
2It is cited as being posed by M. Artin and M. Hochster in 1982 ([6], [11], [7]), but none of the references cites those two

authors directly and we have not been able to find a direct source that supports it.
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Even though we know of the existence of this wider conjecture, we will only focus on the specific case
of Xn.

It is interesting to remember that the properties over the scheme can be checked over the associated
ring and, for that, we can use Serre’s conditions:

Definition 1.5. Given a Noetherian commutative ring A and an integer k � 0, A is said to fulfil Serre’s
condition if

(i) Rk if Ap is a regular local ring for any prime ideal p ⇢ A such that height(p)  k .

(ii) Sk if depthAp � inf{k , height(p)} for any prime p.

Theorem 1.6 (Serre’s criteria). Given a Noetherian commutative ring A, then

(i) A is reduced i ↵A satisfies R0 and S1;

(ii) A is normal i ↵A satisfies R1 and S2;

(iii) A is Cohen–Macaulay i↵ A satisfies Sk for all k � 0;

(iv) A is regular i↵ A satisfies Rk for all k � 0.

Other questions that can be asked are related to the singularities of these schemes. In this sense, it is
thought to have rational singularities (in characteristic 0)3, though maybe the conjecture could be about
whether they have log-canonical or log-terminal singularities, and the equivalents in characteristic p > 0,
F-rational, F-pure or strongly F-regular. These properties, in characteristic 0, can be studied through the
associated jet schemes, so we will take a look at them in the last section.

On another matter, those are not easy problems, so one ends up questioning oneself about similar
schemes. In our case, we studied, among others, the pairs of matrices whose commutator’s diagonal
vanishes, that is, the scheme associated to:

Xdiag = {(A,B) 2 Mat(K )⇥2
| diag([A,B]) = 0},

where diag(M) applied to a matrixM is the projection onto the diagonal elements, (i.e.,M=(mi ,j)1i ,jn 7!

diag(M) = (mi ,i )1in).

2. Scheme of commuting matrices

In this section we present the results that we obtained on the commuting scheme. First of all, we point
out that Conjecture 1.3 is known to be true for small n:

Proposition 2.1 (see [4], [5]). Xn is reduced, irreducible and Cohen–Macaulay but not Gorenstein for n  4.

The proof of this result was obtained using the computational algebra system Macaulay2 ([3]). In that
matter, we have redone the computations with a small improvement that might be helpful in attempting
the proof for n = 5.

3The statement of rational singularities is not a published conjecture or open problem, but it would fit in the behaviour of
a more general family of schemes that are closely related to it, studied in [1].
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Proposition 2.2. OXn := Rn/In is Cohen–Macaulay (respectively reduced) i↵, for any 1  i , j  n, the
quotient OXn/(ai ,i , bj ,j) is Cohen–Macaulay (respectively reduced). Where (ai ,i , bj ,j) is the ideal (sheaf)
generated by the (i , i)-th entry of the matrix A and the (j , j)-th entry of the matrix B.

Furthermore, we have proven the following result:

Theorem 2.3. Xn is regular in codimension 3 but not 4 for all n � 1. That is, it satisfies Serre’s condi-
tions R0, R1, R2 and R3 but not Rk for any k � 4.

This result has the following implications:

Proposition 2.4. The singular locus of X red
n , the associated reduced scheme of Xn, has codimension at

least 4. If Xn is reduced, then its singular locus has codimension 4.

Proposition 2.5. If Xn has any embedded component, it must have at most dimension n2 + n � 4.

In particular, Theorem 2.3 implies, through Serre’s criteria (Theorem 1.6), the following proposition:

Proposition 2.6. If Xn is Cohen–Macaulay, then it is reduced and normal.

The implication of being reduced was known previously (cf. [4]), but the argumentation was di↵erent
(see [15, Prob. 2.7.1]). The implication of being normal was also known as an implication of it being
reduced and the following theorem:

Theorem 2.7 ([12]). Given a connected non-commutative reductive lie algebra g over an algebraically
closed field K of characteristic 0, let Cred(g) = {(a, b) 2 g | [a, b] = 0} be the reduced scheme of pairs
of commuting elements. Then codimg⇥g(Cred(g))sing� 2, where (Cred(g))sing stands for the singular locus
of Cred(g).

Even though Proposition 2.6 can be deduced from results that were already known, its implications
to Xn for n  4 do not seem to be recorded in the literature. In any case, we have:

Proposition 2.8. Xn is reduced, irreducible, Cohen–Macaulay and normal, but not Gorenstein, for n  4.

The proof of Theorem 2.3 is too long to be included in its full extension, so we will just give the
main ideas.

Sketch of Proof of Theorem 2.3. For ease of reading we have divided the proof in three parts. Throughout
we will use the Jacobian smoothness criterion.

1. R0 and R1 properties.

Let us consider B in Jordan canonical form. If we name Jk the nilpotent Jordan block of size k ,
then there exist �1, ... ,�r 2 K pairwise di↵erent elements and a1, ... , ar > 0 integers satisfying
a1+ · · ·+ar = n, such that B is a block diagonal matrix of the form B = diag(�1Ia1 +Ja1 , ... ,�r Iar +
Jar ) = (bi ,j)1i ,jn.

In this case:

c r ,si ,j :=
@fr ,s
@ai ,j

=

8
>>>><

>>>>:

1 if i = r , s = j + 1  n and bj ,j = bj+1,j+1,

�1 if j = s, r = i � 1 � 0 and bi�1,i�1 = bi ,i ,

bj ,j � bi ,i if (i , j) = (r , s) and bj ,j 6= bi ,i ,

0 otherwise.
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First, we will prove that det(c r ,si ,j )br ,r 6=bs,s
bi ,i 6=bj ,j

62 In, where the columns of the matrix are indexed by

the (i , j) and the rows by (r , s), both with the same ordering. We observe that the product of the
diagonal elements is

Q
{(i ,j)|bi ,i 6=bj ,j}

(bj ,j � bi ,i ) 62 In. We will prove that all the other products in the

determinant vanish.

Let us pick the column (i , j) and assume that we have to pick a nonzero element outside the diagonal.
If j + 1  n and bj ,j = bj+1,j+1, then bi ,i 6= bj+1,j+1, so for the (i , j) column, we can get the entry
of the (i , j + 1) row which has a value of 1. In this case, for the (i , j + 1) column we cannot get the
diagonal element. If i � 1 � 0 and bi�1,i�1 = bi ,i , then bi�1,i�1 6= bj ,j and for the (i , j) column we
can get the entry of the (i � 1, j) row that has a value of �1. In this case, for the (i � 1, j) column
we cannot get the diagonal element. Otherwise, the only nonzero element is the diagonal one.

A non-vanishing product would be equivalent to this process having a cycle, but either the i decreases
or the j increases, so we can never have a cycle, and all products, apart from the diagonal one, vanish,
as we wanted to show.

Now, we will reason by induction. Given (k , l) such that bk,k = bl ,l , l + 1  n and bl ,l = bl+1,l+1,
assume that all the columns with indexes in

S = {(i , j) | bi ,i 6= bj ,j} [ {(i , j) | bi ,i = bj ,j , j + 1  n, bj ,j = bj+1,j+1 and (i , j) < (k , l)},

where the ordering is the lexicographic order, are linearly independent. Then, ck,l+1
k,l = 1 and for

all (i , j) 2 S, ck,l+1
i ,j = 0, which proves that the columns with indexes in S [ {(k , l)} are linearly

independent. In this way, we have proven that the columns with indexes in

I = {(i , j) | bi ,i 6= bj ,j} [ {(i , j) | bi ,i = bj ,j , j + 1  n, bj ,j = bj+1,j+1}

are linearly independent.

Since the cardinality of I is n2 � n, we get that this closed point is reduced.

Through the action of GLn(K ) we get that the open set that includes all closed points (A,B) where
B is non-derogatory is regular.

Since the complementary of the set where A and B are non-derogatory can be checked to have
codimension 2, this implies R0 and R1 for Xn.

2. R2 and R3 properties.

First of all, we notice:
X red
n = Y [

[
Y r ,s
(i1,1,...,i1,t1 ,i2,1,...,i2,t2 ,...,ir ,tr )
(j1,1,...,j1,t01

,j2,1,...,j2,t02
,...,jr ,t0r

)

,

where Y = {(A,B) 2 X red
n | A and B are non-derogatory} and

Y r ,s
(i1,1,...,i1,t1 ,i2,1,...,i2,t2 ,...,ir ,tr )
(j1,1,...,j1,t01

,j2,1,...,j2,t02
,...,jr ,t0r

)

is the set of pairs of commuting matrices (A,B) such that both are derogatory, A has r dis-
tinct generalised eigenvalues with Jordan decomposition in blocks of sizes (i1,1, ... , i1,t1 , i2,1, ... ,
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i2,t2 , ... , ir ,tr ), and B has s di↵erent generalised eigenvalues with Jordan decomposition in blocks
of sizes (j1,1, ... , j1,t01 , j2,1, ... , j2,t02 , ... , jr ,t0r ).

If r  n � 3 or s  n � 3, then

dim
⇣
Y r ,s
(i1,1,...,i1,t1 ,i2,1,...,i2,t2 ,...,ir ,tr )
(j1,1,...,j1,t1 ,j2,1,...,j2,t2 ,...,jr ,tr )

⌘
 n � 4,

for any (i1,1, ... , i1,t1 , i2,1, ... , i2,t2 , ... , ir ,tr ) and any (j1,1, ... , j1,t01 , j2,1, ... , j2,t02 , ... , jr ,t0r ), so we can ig-
nore those sets.

Then, to prove the result, it is enough to check, for each one of the sets corresponding to n � 2 

r , s  n � 1, either that it has, at most, dimension n � 4, or that it is composed of regular points.
Checking for regularity is done by computing the rank of the Jacobian matrix.

3. R4 property failure.

Take the closed points of the form (A,B) where A and B are both diagonalisable and they both
have n � 1 distinct eigenvalues, such that, when simultaneously diagonalised, they have the
form gAg�1 = diag(�2,�2,�3,�4, ... ,�n), gBg�1 = diag(µ2,µ2,µ3,µ4, ... ,µn), for certain g 2

GLn(K ) and certain �i ,µj 2 K . It is immediate to check that the Jacobian matrix has rank at
most n2 � n � 2, so these are all non-regular points. On the other hand, the codimension is 4.

2.1 Related schemes

As we stated in the introduction, we have also worked with some similar schemes, which has lead to the
solution of a small open problem posed by Hsu-Wen Young in his PhD dissertation [16]:

Theorem 2.9. Given a field K, the scheme associated to X = {(A,B) 2 Mat(n,K )⇥2
| diag([A,B]) = 0},

where diag(M) applied to a matrix M is the projection onto the diagonal elements (i.e., M=(mi ,j)1i ,jn 7!

diag(M) = (mi ,i )1in), is a reduced irreducible normal complete intersection scheme over K.

Hsu-Wen Young proved it to be a reduced complete intersection for general n and checked it to be
irreducible for n  3. His motivation was mainly as a counterpart to the diagonal commutator scheme,
which is the scheme:

Dn = {(A,B) 2 Mat(n,F )⇥2
| [A,B] = diag([A,B])},

that is, the pairs of matrices whose commutator is diagonal.

The proof of Theorem 2.9 follows from an easy induction, the Jacobian smoothness criterion and the
use of the following lemmas:

Lemma 2.10. If R is a ring, and a 2 R is not a zero-divisor, then R is a domain (respectively reduced) if
and only if Ra is a domain (respectively reduced).

Remark. This implies that if we have an element a 2 R and an ideal such that (I : (a)) = I , I is prime
(resp. radical) i↵ it is prime (resp. radical) in Ra (thanks to the localisation at a multiplicative set S being
an exact functor from R-modules to S�1R-modules).

Lemma 2.11. Given a ring R, it is a domain (respectively reduced) i↵ the polynomial ring R[X ] is a
domain (respectively reduced).
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3. Jet schemes

In this section we will study the jet schemes over Xn, which are known to be closely related to its singularities
and which will allow us to get some results on the log-canonical threshold, another singularity invariant.

Definition 3.1. The m-th jet scheme associated to a scheme X over an algebraically closed field K is the
set X (m)(K ) = HomK (Spec(K [t]/tm+1),X ) with a natural scheme structure.

It is a well known result that the jet schemes over an a�ne scheme are again a�ne. Furthermore, there
is the following result:

Theorem 3.2. Given a field K and an a�ne scheme X = Spec(K [x1, ... , xn]/I ) over K, where I =
(f1, ... , fr ) ⇢ K [x1, ... , xn] is an ideal, we have that the defining equations for the m-th jet scheme over the
polynomial ring K [{x1,k , ... , xn,k}0km] are

f1(x̃1(t), ... , x̃n(t)) ⇠= 0 mod tm+1,
...

fr (x̃1(t), ... , x̃n(t)) ⇠= 0 mod tm+1,

where x̃i (t) = xi ,0 + xi ,1t + · · ·+ xi ,mtm.

Applied to our scheme, we get:

Proposition 3.3. Over the ring K
h
{ai ,j ,k , bi ,j ,k}0km

1i ,jn

i
, we define the matrices Ak = (ai ,j ,k)1i ,jn,

Bk = (bi ,j ,k)1i ,jn. In this situation, the elements generating the ideal that defines the m-th jet scheme

over Xn, which we name X (m)
n , are the entries of the following matrices:

[A0,B0]

[A0,B1] + [A1,B0]

[A0,B2] + [A1,B1] + [A2,B0]

...

[A0,Bm] + [A1,Bm�1] + · · ·+ [Am�1,B1] + [Am,B0].

Remark. It is worth noticing that the group GLn(K ) acts on the scheme by simultaneous conjugation on
all the matrices X0, ... ,Xm, Y0, ... ,Ym.

The main results known about the jet schemes of Xn are:

Theorem 3.4 ([14]). For n  3 and for all m � 0, the m-th jet scheme over Xn is irreducible and of
dimension (n2 + n)(m + 1).

Theorem 3.5 ([14]). For all m > 0 exists an integer N(m) such that for all n � N(m), the m-th jet
scheme over Xn is reducible.
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Even though it is not mentioned in that paper, the following proposition can be deduced from the proof
of Theorem 3.5:

Proposition 3.6. For all m > 0 there exists an integer N(m) such that for all n � N(m), the m-th jet
scheme over Xn is not equidimensional and of dimension strictly greater than (n2 + n)(m + 1).

Now, it is worth noticing the following result by Mustată:

Theorem 3.7 ([9]). If X is a smooth variety over C and Y ⇢ X is a closed sub-scheme, then the
log-canonical threshold of the pair (X ,Y ) is given by

lct(X ,Y ) = dimX � sup
m�0

dimY (m)

m + 1
,

where Y (m) represents the m-th jet scheme over Y .

Joining these all, we obtain the following:

Proposition 3.8. For n  3, lct(Mat(n,C)⇥2,Xn) = n2 � n = codimXn.

Proposition 3.9. For n � 30, lct(Mat(n,C)⇥2,Xn) < n2 � n = codimXn.

These results show the di↵erences in the behaviour of the singularities of Xn depending on n.

The main results of Sethuraman and Šivic come from the existence of an irreducible open set of X (m)
N

having dimension (n2+n)(m+1), which we denote U(m)
n , formed by the set of closed points (A(t),B(t)) =

(A0 +A1t + · · ·+Amtm,B0 +B1t + · · ·+Bmtm) where A0 is non-derogatory, and the following lemmata:

Lemma 3.10. Given a positive integer N, assume that X (m)
n is irreducible for all n < N. Then, for any

point (A,B) = (A(t),B(t)) 2 X (m)
N such that A0 or B0 have two distinct eigenvalues, we have that

(A,B) 2 U
(m)
N , where U

(m)
N denotes the closure of U(m)

N .

And, if we define the corresponding open set where B0 is non-derogatory as U 0(m)
n :

Lemma 3.11. Let f be an automorphism of X (m)
n such that f (U(m)

n ) = U(m)
n or f (U 0(m)

n ) = U 0(m)
n or

f (U(m)
n \ U 0(m)

n ) = U(m)
n \ U 0(m)

n . Then, (A,B) 2 U
(m)
n i↵f (A,B) 2 U

(m)
n .

Our method consists in proving that the closed subvariety where A0 is in a specific nilpotent Jordan
canonical form is irreducible. In this case, the set

SA0 = {(A0(t),B 0(t)) 2 X (m)
n | 9g 2 GLn(F ), � 2 F such that A0

0 = gA0g
�1 + �I}

is irreducible. Finally, we have that there is a non-derogatory matrix B0 commuting with A0. Taking

A(t) = A0 + 0t + · · ·+ 0tm and B(t) = B0 + 0t + · · ·+ 0tm, we have that this pair belongs to U(m)
n and,

therefore, SA0 \ U(m)
n 6= ?. Which, by the irreducibility of SA0 , implies SA0 ⇢ U

(m)
n .

We also used similar methods to set bounds on the dimension of the jet schemes.
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Let us define

Y(r1,...,rs) = {(A(t),B(t)) 2 X (1)
n | A0 = J(r1,...,rs)},

eY(r1,...,rs) = {(A(t),B(t)) 2 X (1)
n | 9g 2 GLn(F ), 9� 2 K s.t. gA0g

�1 + �I = J(r1,...,rs)},

where J(r1,...,rs) refers to the nilpotent matrix in Jordan canonical form with s blocks of sizes r1, ... , rs .

The results that we obtained using the described method and basic linear algebra are the following:

Proposition 3.12. The reduced scheme associated to

(i) Y(1,...,1) is irreducible for all n � 1;

(ii) Y(n/r ,...,n/r), for r |n, is irreducible if and only if X (r�1)
n/r is irreducible;

(iii) Y(n�r ,1, r...,1), for r � 0 is irreducible for all n � r + 2 if and only if it is for some n � r + 2;

(iv) Y(n�2,1,1) is irreducible for all n � 4;

(v) Y(n�r ,1, r...,1), for r � 0, has the same codimension for all n � r + 2;

(vi) eY(n�r ,1, r...,1), for r � 0, has dimension at most 2(n2 + n);

(vii) eY((n�1)/2,(n�1)/2,1), for n = 5, has dimension at most 2(n2 + n).

All these results allowed us to prove the following:

Theorem 3.13. The first jet scheme over X4 is irreducible of dimension 2(42 + 4) = (m + 1)(n2 + n).

Theorem 3.14. The first jet scheme over X5 has dimension 2(52 + 5) = (m + 1)(n2 + n).

These results on the jet schemes have implications on another open problem (see [14]) that deals
with the dimension of K [A1, ... ,Am], the algebra generated by m square n ⇥ n commuting matrices over
a field K . The question is whether it is bounded by n. The answer is positive for m = 2 and negative
for m � 4 (cf. [14]).

Specifically, Sethuraman and Šivic introduced a relation between the jet schemes over Xn with algebras
generated by three commuting matrices:

Proposition 3.15 ([14]). Given K an algebraically closed field and k � 0 an integer, if Jk+1 is the nilpotent
Jordan block of dimension k + 1, C is a block diagonal matrix in Mat(n(k + 1),K ) consisting of n copies
of Jk+1 along the diagonal up to addition of scalars and A, B two matrices commuting with C, then if

X (k)
n is irreducible dimK [A,B ,C ]  n(k + 1).

In particular, if we combine this proposition with the results that we obtained on the first jet scheme
over X4, we obtain the following new result:

Corollary 3.16. Let K be an algebraically closed field. If J2 is the nilpotent Jordan block of dimension 2,
C is a block diagonal matrix in Mat(8,K ) consisting of 4 copies of J2 along the diagonal up to addition of
scalars and A, B two matrices commuting with C, then dimK [A,B ,C ]  8.
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coincideixen. Això resol una conjectura proposada per Antunes i Freitas i
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utilitza una nova tècnica per tractar l’espectre d’un l’operador, que consisteix a
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A negative result for hearing the shape of a triangle

1. Introduction

The main result of the thesis is the following theorem.

Theorem 1.1. The first, second and fourth eigenvalues of the Laplace operator on an Euclidean triangle

with null Dirichlet boundary conditions are not enough to determine it up to isometry.

This is a conjecture proposed by Antunes and Freitas in [1], suggested by numerical evidence, but a
rigorous proof was required. The Dirichlet eigenvalues of the Laplace operator for a triangle ⌦ are real
numbers � such that there is a nonzero smooth function u defined on ⌦ and continuous on ⌦ such that(

��u = �u in ⌦,

u = 0 on @⌦.

It is a well known fact that the set of such � forms an increasing sequence 0 < �1 < �2  �3  · · · whose
only limit point is 1, and that the corresponding eigenfunctions uj form an orthonormal basis of L2(⌦).
The eigenvalues of a domain are closely related with its geometric properties, constituting an active area
of research called spectral geometry. A classical example of this relationship is Weyl’s law, which relates
the asymptotics of the eigenvalues to the volume of the domain, and a later result by McKean and Singer
states that the perimeter is also determined by the eigenvalues [20]. More results of this kind can be found
in [2] and [24]. Other results about how the geometry of a domain determines its spectrum can be found
in Henrot’s book [14].

The question of the determination of a domain given the set of its Laplace eigenvalues was posed by
Mark Kac in his famous paper “Can one hear the shape of a drum?” [16]. Since then, the answer has
been found to be negative in general; in particular, for euclidean polygons, the first example of a pair of
non-isometric polygons with the same spectrum is due to Gordon, Webb and Wolpert [13]. However, there
are positive results when we restrict the determination to a class of domains, the most successful of which
was found by Zelditch [25], who proved spectral determination for analytic domains with two classes of
symmetries.

Less is known about domains with more irregular boundaries, the simplest of which are polygons. In
the case of triangles, it has been proven that the whole spectrum of the Laplace operator determines the
shape of a triangle ([7], with a recent simple proof by [9]), and later Chang and DeTurck proved that only
a finite amount of eigenvalues, which depends on �1 and �2, is enough [5]. It is natural to try to improve
the result to only a finite and fixed amount of eigenvalues, answering the question “Can a human hear the
shape of a triangular drum?”.

Since the space of triangles up to isometries has dimension 3, we would expect that 3 eigenvalues
should be enough, and, if so, it is not clear which ones. Antunes and Freitas ([1]) conjectured that indeed
the three first eigenvalues �1, �2 and �3 do determine the shape of a triangle. Numerical evidence by
themselves seems to indicate that this is not the case for �1, �2 and �4, and in this paper we will prove
this fact (Theorem 1.1). This will give an example of an obstruction to determining the shape of a triangle
from a finite portion of its spectrum.

The proof of the theorem is computer-assisted: this means that first some topological, analytic and
geometric arguments are used to reduce the proof of the theorem to a finite but large number of compu-
tations, which are then verified by a computer. The computations are carried in a rigorous way, using the
technique of interval arithmetic which keeps track of propagated error bounds for all the computations.

An expanded version of this work, written jointly with Javier Gómez-Serrano and including the codes
for the computer verifications, will appear elsewhere and is available as a preprint [11].
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2. Structure of the proof of Theorem 1.1

By the scaling of the problem, we reduce our search to the set of triangles with a fixed base length (together
with additional conditions that ensure that we only consider one triangle for each similarity class); instead
of looking for all three eigenvalues �1, �2, �4 to be equal, we just require the quotients ⇠21 = �2/�1 and
⇠41 = �4/�1 to take the same value. Since the eigenvalues scale by r

�2 when the lengths of a triangle are
scaled by r , if two non-congruent triangles are found with the same quotients, there will be a scaling that
makes all three eigenvalues coincide.

Fixing the first two vertices of the triangle to be (0, 0) and (1, 0), we use the coordinates (cx , cy ) of
the third vertex to parametrize the search space. Our approach consists in using a topological argument
to show that in each of two disjoint regions in this parameter space there is a triangle in which ⇠21 and ⇠41
take the same prescribed value. More precisely, we claim that there are two distinct triangles for which
⇠21 = ⇠̄21 := 1.67675 and ⇠41 = ⇠̄41 := 2.99372.

Since rigorous calculations with the computer are done using interval arithmetic, we need a topological
technique to transform the closed condition into an open condition tolerates error intervals. For that purpose
we will use the Poincaré–Miranda theorem (see [19]):

Theorem 2.1. Given two continuous functions f , g : [�1, 1]2 ! R such that f (x , y) has the same sign

as x when x = ±1 and g(x , y) has the same sign as y when y = ±1, there exists a point (x , y) 2 [�1, 1]2

such that f (x , y) = g(x , y) = 0.

The regions that we will consider are two parallelograms around the points A = (0.63500, 0.27500) and
B = (0.84906, 0.31995), designed such that ⇠21 and ⇠41 have approximately a constant value each in a pair
of opposite edges. Using the computer we will verify that the functions ⇠21� ⇠̄21 and ⇠41� ⇠̄41 each have a
constant and opposite sign in opposite edges of the parallelogram, and hence by the theorem, together with
the well known domain continuity of eigenvalues, we will conclude that such two distinct triangles exist.

The vectors defining the parallelogram are obtained from the inverse of an approximation of the di↵er-
ential of the R2-valued funcion (⇠21, ⇠41) at the points A and B , scaled so as to minimize the computation
time. This setup is displayed in Figure 1 together with a plot of non rigorous contour lines of the eigenvalue
quotients.

0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94
0.25
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0.28
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0.31

0.32

0.33

0.34

0.35
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B
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Figure 1: Numerical approximate plot of the quotients ⇠21 (discontinuous lines) and ⇠41 (continuous lines)
around the region of interest. The validated parallelograms around A and B are shown in green.
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The pointwise verification of the values ⇠21 and ⇠41 on the edges, which depends on an accurate
calculation of �i for i = 1, 2, 4, consists of two steps. The first one, treated in Section 3, is about showing
that the computed eigenvalues actually correspond to the ordered ones �1, �2 and �4; in order to do that,
we will prove a lower bound for �5 combining techniques from the Finite Element Method with rigorous
bounds linking the finite dimensional problem to the infinite dimensional one. The second step consists of
finding accurate values of four eigenvalues that lie below the threshold obtained in the first part, which
implies that they will indeed have to be the four lowest ones. This is done using the Method of Particular
Solutions and recent rigorous bounds based on the L2 norm of the boundary error of candidate approximate
eigenfunctions, explained in Section 4.

We emphasize the di�culty of finding the order of an eigenvalue, which is a global problem, compared
to the local easier task of refining its value. To the best knowledge of the author, this is the first computer-
assisted proof in which these two distinct, local and global methods are used to verify eigenvalues of an
operator.

The computer-verified enclosures of ⇠21 and ⇠41 explained above are only obtained for a finite set of
points. In order to check the hypotheses of the Poincaré–Miranda theorem in all the edges of the parallel-
ograms we will use an argument based on domain monotonicity for the Laplace eigenvalues to propagate
the bounds to a neighborhood of the verified points. The details of this part are explained in Section 5. We
now explain more about the implementation and execution of the automatic part of the proof.

2.1 Implementation of the computer-assisted proof

In the recent years, the application of calculations done by computers to mathematical proofs have become
more popular due to the increment of computational resources, but in order to make sure that their results
are rigorous, we need to control the errors that floating point arithmetic can accumulate. This is usually
done by means of interval arithmetic, in which the data that a computer stores for a real number is an
interval (two endpoints, or a midpoint and a radius) of real numbers, stored by two floating point numbers,
instead of just one.

Operations between intervals are implemented to return intervals which are guaranteed to contain every
possible result when the operands belong to the input intervals. For example, if [x ] = [x , x ] and [y ] = [y , y ]
are two intervals, their sum will can be given by the interval [x ] + [y ] = [x + y , x + y ] and their product by
[x ] · [y ] = [min{xy , xy , xy , xy}, max{xy , xy , xy , xy}]. The same rule applies to function implementations:
a function f evaluated on [x ] should return an interval containing every f (x) for x 2 [x ]. We refer to
the book [23] for an introduction to validated numerics, in which most of the techniques used here are
explained, and to [10] for a more specific treatment of computer-assisted proofs in PDE.

The validated computations are performed using the rigorous arithmetic library Arb, developed by
Fredrik Johansson [15], which can be found at http://arblib.org. Other non-rigorous computations
are made using common libraries such as ALGLIB or Boost. The validation of one of the sides of a
parallelogram can use approximately from 500 to 2000 points, and the total running time can take from 4
to 14 hours in 120 parallel machines, approximately. These benchmarks are greatly improved in [11] thanks
to changes described throughout the text.

3. Separation of the first four eigenvalues

In order to find a rigorous lower bound for the fifth eigenvalue of a triangle we will use a recent bound
found by Liu [17], which is similar to the one in [6] but simplifies the hypotheses and improves the
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constant. Both use the non-conforming Finite Element Method of Crouzeix–Raviart; other rigorous bounds
with conforming finite elements were explored, like [18], but the bound is worse and the method is harder
to implement with validated numerics because its mass matrix is not diagonal.

The Crouzeix–Raviart finite-element method uses a triangulation of the domain ⌦, which in our case
we will take to be the trivial triangulation given by N

2 triangles with sides equal to 1/N of the original
one and similar to it. The basis functions are indexed by the interior edges of the triangulation: if E is a
common edge of triangles T1, T2, the basis function  E is the unique function supported on T1 [T2 such
that restricted to each triangle is a�ne, takes the value 1 in the midpoint of E and the value 0 in the
midpoints of the other edges of T1 andT2.

We define the coe�cients of the sti↵ness and mass matrices A = (aEF ), B = (bEF ) by the bilinear
forms

aEF =

Z

⌦
r E ·r F , bEF =

Z

⌦
 E F .

For our choice of triangulation, B is simply a multiple of the identity 2|⌦|I/(3N2), whereas A is a
sparse matrix. This will allow us to work with a matrix eigenvalue problem for the symmetric matrix
M = B

�1
A instead of a generalized one. The main result that we will use is the following ([17, Thm. 2.1

and Rmk. 2.2]):

Theorem 3.1. Consider a polygonal domain ⌦ with a triangulation so that each triangle has diameter at

most h. Let �k be the k-th eigenvalue of ⌦ and �k,h the k-th eigenvalue of the Crouzeix–Raviart discretized

problem for ⌦. Then
�h,k

1 + C 2
h�h,k

 �k , (1)

where Ch  0.1893h is a constant.

In order to be able to deal with approximate eigenvalues we will need in addition the following lemma
from [21, Thm. 15.9.1].

Lemma 3.2. Let (�̃h, ũh) be an approximate algebraic eigenpair such that �̃h is closer to some �h than

to any other discrete eigenvalue. Suppose that the coe�cient vector ũh is normalised with respect to B,

kBũhkB�1 = kũhkB = 1. Then the algebraic residual r := Aũh � �̃hBũh satisfies

|�h � �̃h|  krkB�1 .

Remark 3.3. We can combine Theorem 3.1 with Lemma 3.2 using the monotonicity of (1), using �h,k �
krkB�1 as a lower bound of �h,k instead.

It is easy to obtain estimations �̃h with a very small residual; the hardest part here before applying the
theorem is to check that they have indeed the correct index, i.e., that they are closer to the appropriate �h
than to any other discrete eigenvalue. Thus we need to control the whole spectrum of the discrete problem.

More precisely, in order to get a lower bound for �5 we need to separate the first 5 eigenvalues from
the rest so that we can control them, and in order to do that we will perform Givens rotations until the
intervals provided by Gershgorin’s theorem can be separated in two disjoint components, one containing
the 5 smallest eigenvalues and the other containing the rest. If this holds, then the strong version of
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Gershgorin’s theorem will guarantee an upper bound for �h,5. Therefore, provided that the residuals are all
very small and that all approximate eigenvalues are di↵erent (which happens in our setting), Lemma 3.2
will guarantee that there are 5 distinct discrete eigenvalues below the upper bound and therefore they will
be forced to have the correct indices.

This allows us to verify �h,5 with an error only depending on its residual, and using Remark 3.3, get
a lower bound of �5. Therefore, the first four eigenvalues can be separated just by checking that they are
distinct and smaller than this lower bound.

The Givens rotations must be applied in a rigorous way using interval arithmetic, although the angle of
the rotation is chosen in a non rigorous way. The rotations are performed by steps: in each step, several
iterations are performed to reduce the upper bound of the lowest 5 Gershgorin intervals below a fixed
threshold and to increase the lower bound of the highest Gershgorin intervals above another threshold.
These thresholds are improved at each step progressively (the former is reduced, the latter is increased).

The iterations consist in making a Givens rotation to set to zero each o↵-diagonal entry whose absolute
value exceeds the maximum Gershgorin radius allowed (i.e. the di↵erence between the diagonal value and
the current threshold) divided by the number of o↵-diagonal entries. This heuristic tolerates small absolute
values in o↵-diagonal entries and stops when the Gershgorin radius reached is small enough.

The execution of this algorithm for our data required a subdivision into N
2 triangles, for N between 18

and 21, and had a running time of between 15 and 45 minutes at a precision of 1024 bits. After the
presentation of the thesis, with Gómez-Serrano, we simplified this part and reduced its computation time
by showing that we can bound explicitly the di↵erence between the exact diagonal form of the matrix
and a nonrigorous diagonalization, provided that it is precise enough. The argument is based on stability
bounds of an application of the Gram–Schmidt orthogonalization process to the proposed almost-orthogonal
approximate eigenvector basis (see [11] for more details).

4. Rigorous eigenvalue bounds for individual trian-

gles

Our approach to find tight bounds for the eigenvalues of triangles uses the Method of Particular So-
lutions (MPS), introduced by Fox, Henrici and Moler in [8] and more recently revived by Betcke and
Trefethen [4]. In this method, a function u is written as a linear combination of functions �i (1  i  N)
that satisfy pointwise the equation (�+ �)�i = 0 for a fixed �. The coe�cients are chosen to optimize
the proximity of the function to the eigenspace for the actual eigenvalue �j , in a sense made precise in [4],
and this is measured by the least singular value of a certain matrix that involves the values of u at discrete
points of the boundary @⌦. This parameter is minimized with respect to � by using a golden ratio search.
This provides a candidate � 2 R and coe�cients ci for which u(x) =

PN
i=1 ci�i (x) can be computed with

arbitrary precision.

The functions that we will use for the MPS consist of two types: the first ones are of the form �(x) =
Y0(

p
�|x � x0|), for x0 a point outside ⌦. The second type of functions are parametrized by a vertex of

the triangle and a positive integer j , and take the form  j(r , ✓) = Jj↵(
p
�r) sin(j↵✓), where (r , ✓) are the

polar coordinates of the point with respect to a vertex in the triangle whose total angle is ⇡/↵, and ✓ is
measured from an adjacent side. The first kind of functions allow us to approximate the function in the
interior of the triangle and near the sides, while the second kind gives the correct asymptotic behavior of
the solution near the vertices of the triangle.
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We must mention that, shortly before the submission of the thesis, a remarkable paper by Gopal and
Trefethen ([12]) introduced a new basis of functions that o↵ers root-exponential convergence, meaning
that with a lot fewer functions one could obtain a better fitting in much less time. In the updated version
of this work [11], Gómez-Serrano and the author use this so-called lightning Laplace solver method to
improve the total running time from around a thousand hours to just about 42.

The main tool that we will use to find rigorous bounds for eigenvalues is the L2 bound given by Barnett
and Hassell [3]. However, their method is optimized for high eigenvalues, so we will have to adapt some of
the steps to our case of small eigenvalues. We summarize the main results that we will use. Let ⌦ be a
triangle and u 2 C

2(⌦) be nonzero such that (�+ �)u = 0. Consider the tension

t[u] =
kukL2(@⌦)

kukL2(⌦)
.

Let �j , uj be the sequence of eigenvalues and eigenfunctions of ⌦, satisfying (�+ �j)uj = 0 with Dirichlet
null boundary conditions. Let vj be the normal derivative of uj , defined on @⌦. We define the operator

A(�) =
X

�j

vjhvj , ·i
(�� �j)2

,

and its decomposition as a sum of three:

Anear(�) =
X

|���j |
p
�

vjhvj , ·i
(�� �j)2

,

Afar(�) =
X

�/2�j2�, |���j |>
p
�

vjhvj , ·i
(�� �j)2

,

Atail(�) =
X

�j<�/2 or �j>2�

vjhvj , ·i
(�� �j)2

,

where h·, ·i is the standard inner product on L
2(@⌦). This operator is useful because its norm is controlled

by the tension (see [3, §3]):
t[u]�2  kA(�)k. (2)

Moreover we have the following explicit bounds from [3, Lem. 4.1] and [3, Lem. 4.2]:

kAfar(�)k  C1, (3)

kAtail(�)k  C2�
�1/2, (4)

with constants C1, C2 given below. For the near term, since we are working with very low eigenvalues,p
� is actually small enough that only the summand with �j = � appears:

kAnear(�)k =
kvjk2L2(@⌦)

(�� �j)2
. (5)

39Reports@SCM 5 (2020), 33–44; DOI:10.2436/20.2002.02.21.



A negative result for hearing the shape of a triangle

For convex domains, like in our case, Section 6 of [3] o↵ers explicit bounds for the constants. By
keeping track of all the constants used in their derivation, it is not hard to see that for a triangle with
inradius ⇢, one can take C1,C2 < 28(1 + ⇢)/⇢.

Putting (2)–(5) together we have

t[u]�2 
kvjk2L2(@⌦)

(�� �j)2
+ 7C⌦(1 + ��1/2). (6)

Finally, recall Rellich’s formula [22]:

Z

@⌦
(@nuj)

2
x · n ds = 2�j .

For our choice of origin of coordinates, this just gives us kvjk2L2(@⌦) = 2�j/⇢. Inserting this into (6), we
have proved:

Proposition 4.1. The distance d from � to the spectrum of the Laplacian on ⌦ can be bounded above by

t[u]�2  2�̃j
⇢d2

+ 7C⌦(1 + ��1/2),

where �̃j is an upper bound for �j .

Thus we must obtain a rigorous upper bound for the L
2 norm of the candidate eigenfunction on the

boundary of ⌦, and a rigorous lower bound for its interior L2 norm, in order to use the previous proposition
and deduce the existence of an actual eigenvalue near the candidate one.

4.1 Upper bound of the boundary norm

This computation is done by dividing the sides of the triangle into many small intervals, in positions given
by Chebyshev nodes, and in each of them performing a validated computation using Taylor series: the
Taylor polynomial of the function at the center point is evaluated in the whole interval, and to this value
the remainder of Taylor’s theorem is added. A validated enclosure for this remainder consists of the Taylor
polynomial of the function at the whole interval evaluated in the whole interval.

When this computation exceeds a threshold in absolute value (in our case, 10�5), the interval is split in
half and the validating function is called recursively for the two halves. In the end, all contributions from
all intervals are added up to get the L

2 bound. This calculation takes approximately 10 minutes per point
at a precision of 128 bits, using a total of 317 charge basis functions and 15 vertex basis functions.

4.2 Lower bound of the interior norm

This bound is obtained by using a grid of 8⇥8 small triangles that occupy a smaller triangle of side 0.8 times
the original one (hence the area of each triangle is 0.01|⌦|). Figure 2 displays the grid for the plot of the
first and the fourth eigenfunction of triangle B . In each of the triangles a lower bound of the absolute value
of u is obtained using the same method as above (Taylor series bounds and splitting recursively).
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Whenever we obtain a validated estimate, say u ≥ a > 0, on ∂T , where T is one of the small triangles
in the grid, we can extend this inequality to the whole T by using the minimum principle. More precisely,
it is enough to show that −∆u ≥ 0 in T to get that the minimum of u is in ∂T and hence is at least a.
If this does not hold, it means that λu = −∆u < 0 at some point inside T . This means that the open
set U = {u < 0} ∩ T ⊂ T has λ as a Dirichlet eigenvalue, and hence by the Faber–Krahn inequality, we
get a lower bound for its area:

0.01|Ω| = |T | ≥ |U| ≥
πj2

0,1

λ
>

18.1684

λ
.

This is a contradiction by orders of magnitude for our triangles (|Ω| ≤ 0.25 and λ < 1000).

The calculation of this part also takes approximately 10 minutes per point at a precision of 128 bits,
using a total of 317 charge basis functions and 15 vertex basis functions.

(a)

(b)

Figure 2: Grid used to validate a lower bound for ‖u‖L2(Ω) for triangle B, with (a) the first eigenfunction
and (b) the second eigenfunction plotted on top.

5. Extension of the bounds to a region of triangles

Our goal is to propagate the rigorous bounds of an eigenvalue of the Laplacian of a triangle with Dirichlet
boundary conditions to a neighborhood of triangles. In the original version of the thesis, this was done
using a continuity argument based on the fact that an operator norm bound of the difference of two
compact operators (in this case, the inverse of the Laplacian and of a deformed version of it associated to a
neighboring triangle) translates into a bound of the difference of all their respective eigenvalues. We later
realized that obtaining an explicit bound for the difference of such operators was harder than we thought,
and discovered another method which is conceptually much simpler and surprisingly propagates the bound
into longer intervals. Therefore we will just sketch this simpler method, and refer to [11] for more details.
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Lemma 5.1. Let T and T
0
be two triangles, whose vertices are A = (0, 0), B = (1, 0), and C = (cx , cy ),

C
0 = (c 0x , c

0
y ) respectively (cy , c 0y > 0). Consider the cross products p =

�!
AC ⇥

��!
AC

0 = cxc
0
y � cyc

0
x and

q =
�!
BC ⇥

��!
BC

0 = (cx � 1)c 0y � cy (c 0x � 1). Then,

(i) if both p, q < 0, there is a homothety of T
0
by a factor 1� p/c 0y that contains T ;

(ii) if both p, q > 0, there is a homothety of T
0
by a factor 1 + q/c 0y that contains T .

Proof. The proof is very similar in the two cases, so we will only do it for the first one. We want to find
the homothety of scale 1 + r that keeps the vertex B of triangle T

0 fixed and such that the image of its
opposite side contains vertex C of T . The condition becomes simpler once we apply an inverse homothety
to T and T

0, so that it results in the points A, C 000 = (C + rB)/(1 + r), C 0 being aligned. The solution
is r = �p/c 0y , which is positive by our condition. Moreover, triangle T lies below this homothety of T 0

because the vectors
�!
BC and

��!
BC

0 are in the correct orientation due to the condition q < 0. This su�ces
to check that T is contained in this homothety.

Lemma 5.2. With the same notation as in Lemma 5.1,

(i) if p > 0 and q < 0, then T ⇢ T
0
;

(ii) if p < 0 and q > 0, there is a homothety of T
0
by a factor cy/c 0y > 1 that contains T .

Proof. In the first case, the conditions on the signs of the cross products of the side vectors is equivalent
to T being contained in T

0. In the second case, the relative orientations of the sides guarantee that a
homothetic triangle to T

0 of the same height as T whose top vertex coincides with C will contain T , and
the ratio of this homothety is clearly cy/c 0y .

Using the reversed inclusions from the previous lemmas, an easy but tedious calculation which distin-
guishes the two cases above leads to the following result, that can be applied directly to propagate a bound
on ⇠21 or ⇠41 to a neighborhood of a triangle.

Lemma 5.3. Let T be a triangle as above, and consider perturbations of the third vertex of the form C+tv

defining triangles T
(t)
, for t 2 [�`, `], where v = (vx , vy ). Let �n, �

(t)
n be the n-th Dirichlet eigenvalues

of triangles T , T
(t)
, respectively, and define ⇠(t)n1 as the obvious eigenvalue quotient. Then we distinguish

two cases depending on pv =
�!
AC ⇥ v and qv =

�!
BC ⇥ v:

(i) if pv and qv both have the same sign, then for all t 2 [�`, `]

|⇠(t)n1 � ⇠n1|  ⇠n1

"✓
1 + `

|pv |
cy � `|vy |

◆2✓
1 + `

|qv |
cy � `|vy |

◆2

� 1

#
;

(ii) if pv and qv have di↵erent signs, then for all t 2 [�`, `]

|⇠(t)n1 � ⇠n1|  ⇠n1

"✓
cy

cy � `|vy |

◆2

� 1

#
.
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suggesting me the problem, providing me references, giving me a lot of guidance and sharing with me many
useful discussions. I am very grateful to the Mathematics Department of Princeton University, in particular
the Graduate Program, for funding my university fee and allowing my stay as a visitor researcher. I would
also like to thank CFIS and the administrators of the Mobility program for giving me the opportunity to
do this research in another university and funding me. I also thank the MOBINT scholarship for providing
partial financial support for my stay.

References

[1] P.R.S. Antunes, P. Freitas. On the inverse
spectral problem for Euclidean triangles, Proc.
R. Soc. Lond. Ser. A Math. Phys. Eng.

Sci. 467(2130) (2011), 1546–1562.

[2] T.P. Branson, P.B. Gilkey. The asymptotics
of the Laplacian on a manifold with bound-
ary, Comm. Partial Di↵erential Equations 15(2)
(1990), 245–272.

[3] A.H. Barnett, A. Hassell. Boundary quasi-
orthogonality and sharp inclusion bounds for
large Dirichlet eigenvalues, SIAM J. Numer.

Anal. 49(3) (2011), 1046–1063.

[4] T. Betcke, L.N. Trefethen. Reviving the method
of particular solutions, SIAM Rev. 47(3)
(2005), 469–491.

[5] P.-K. Chang, D. DeTurck. On hearing the shape
of a triangle, Proc. Amer. Math. Soc. 105(4)
(1989), 1033–1038.

[6] C. Carstensen, J. Gedicke. Guaranteed lower
bounds for eigenvalues, Math. Comp. 83(290)
(2014), 2605–2629.

[7] C. Durso. On the inverse spectral problem
for polygonal domains, Ph.D. thesis, Mas-
sachusetts Institute of Technology, 1988.

[8] L. Fox, P. Henrici, C. Moler. Approximations
and bounds for eigenvalues of elliptic operators,
SIAM J. Numer. Anal. 4(1) (1967), 89–102.

[9] D. Grieser, S. Maronna. Hearing the shape of
a triangle, Notices Amer. Math. Soc. 60(11)
(2013), 1440–1447.
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The Coates–Wiles Theorem

1. Introduction

An elliptic curve E defined over a field F is a algebraic projective nonsingular curve of genus one with
a distinguished F -rational point O. The Riemann–Roch Theorem shows that the set of a�ne F -rational
points of E can be identified with the locus of solutions in A2(F ) of a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (1)

with coe�cients ai in F . Then, O is the point at infinity. We will denote by E (F ) the set of points P =
(x , y) with x , y 2 F that satisfy (1) together with the point O.

Remarkably, E (F ) can be endowed with a natural group structure. It is given by the Chord-Tangent
Method. Given two points P ,Q 2 E (F ), consider the point R of intersection of the line passing through P
and Q with E (F ). Then, define P + Q to be the intersection of the line through R and O with E (F ).

The endomorphisms of E are the morphisms � : E ! E of algebraic curves that respect the group
structure of E . The set End(E ) of endomorphisms of E is a ring where the operations are addition and
composition. Some examples of endomorphisms are the maps multiplication-by-m for some integer m, which
are naturally defined by adding a point m times using the Chord-Tangent Method. For some curves these
are all the possible endomorphisms. For others, End(E ) can have more elements and in such a case we say
that E has complex multiplication: the ring End(E ) can be either an order in an imaginary quadratic field
or a quaternion algebra, and this last option is not possible if F has characteristic 0. See [4, Chap. 2] for an
outline of the main theorem of elliptic curves with complex multiplication over a field of characteristic 0.

From now on assume that F is a number field with ring of integers OF . It is natural to ask about the
size of E (F ) and it turns out that we can use the group structure of E (F ) to say something about it. A
very important example of that is the Mordell–Weil Theorem which states that E (F ) is a finitely generated
group, i.e. E (F ) ⇠= Zr

� T where r � 0 is an integer and T is a finite group. We call r = rE the rank
of E , a mysterious invariant that has been object of extensive study.

Based on computer calculations, a conjectural answer to find rE was given by Birch and Swinnerton-
Dyer in 1965, the so called BSD Conjecture. It connects the algebraic nature of rE with an analytic object
attached to E , the L-series. In order to define the latter suppose that every ai lies in OF . Then, the L-series
attached to E is defined by an infinite product over the prime ideals of OF

L(E/F , s) =
Y

p

1

Lp(E/F , Np�s)
,

where Lp(E/F ,T ) is a polynomial of degree  2 and it is called the local factor at p. To define it,
consider a minimal Weierstrass equation of E (see [5, Chap. VII, §1]) and reduce it modulo p. It was
proven by Hasse that whenever the reduced equation is an elliptic curve over the field FNp, which we
will denote by Ẽ (FNp), we have #Ẽ (FNp) = Np � ap + 1, where �2

p
Np  ap  2

p
Np. In that

case, we define Lp(E/F ,T ) = (1 � apT + NpT 2). When the reduced curve is not smooth the definition

for Lp(E/F ,T ) depends on the structure of the group of nonsingular points of Ẽ (FNp) (see [5, App. C,
§16]). Using the estimate of ap it is not hard to see that the Euler product converges on the right half
plane {s 2 C : Re(s) > 3/2}. Birch and Swinnerton-Dyer conjectured the following.

Conjecture 1.1 (BSD Conjecture). The series L(E/F , s) admits an analytic continuation to the entire
complex plane. Moreover rE = ords=1 L(E/F , s).
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At this point it is worth mentioning the local global principle. The definition of the L-series attached
to E has information of the curve E defined over the residue fields FNp, which we can call local information,
and the BSD Conjecture states that it is possible to deduce results of E over the global field F from it.

For the case where F = Q the work of Wiles et al. on the Shimura–Tanyiama–Weil Conjecture implies
that L(E/Q, s) has analytic continuation. The analytic continuation for the particular case where E has
complex multiplication is known since the work of Deuring, who gave an expression of L(E/F , s) in terms of
the so called Hecke L-series and Hecke who proved the analytic continuation of the latter. In this project we
outline the proof of the following particular case of the BSD Conjecture. Let K be an imaginary quadratic
field with ring of integers O and class number 1.

Theorem 1.2 (Coates–Wiles). Suppose E is defined over K and it has complex multiplication by O. If
L(E/K , 1) 6= 0, then E (K ) is finite.

We will expose a proof of this theorem given by Rubin in [1]. As we said, the analytic continuation of
the L-series for our particular case was already known at this time so we will focus on proving that E (K )
is a finite group. Our exposition is organized in the following manner.

Section 2 provides an expression of the Selmer group of certain endomorphisms which will allow us
to determine when they are trivial. Section 3 covers the theory of the Euler system of elliptic units. We
introduce this system and explain how it is used to bound certain ideal class groups. Section 4 explains
the connection between elliptic units and the L-series of E and combines the previous work to prove the
theorem. It shows that if L(E/K , 1) 6= 0, we can produce a concrete system of elliptic units. Applying the
theory of Euler systems to it we will be able to give a sharp bound of the ideal class group studied in
Section 3. This is precisely one of the conditions to show that certain Selmer group is trivial and with some
additional work we will be able to conclude the proof.

2. The Selmer group

Let K be an imaginary quadratic field with ring of integers O. Assume here and from now on that K has
class number 1. Let p be a prime ideal in O above a rational prime p > 3 that splits in K and let ⇡ 2 K be
such that (⇡) = p. Let E be an elliptic curve defined over K with complex multiplication by O. Fix K̄ an
algebraic closure of K , let End(E ) be the ring of endomorphisms of E defined over K̄ and fix the unique
isomorphism [·] : O

⇠
�! End(E ) such that [↵]⇤! = ↵! for every ↵ 2 O and ! any invariant di↵erential

of E . When it is clear from the context, we will write ↵ for the endomorphism [↵]. The goal of this section
is to define the ⇡-Selmer group of E over K , that will be denoted by S⇡(E/K ) and characterize when it is
trivial.

We begin by recalling the definition of S↵(E/F ) for a number field F � K and ↵ 2 O and explaining
why it will be relevant to prove the Coates–Wiles Theorem. First suppose that F is any field containing K
and view E as an elliptic curve defined over F . Let F̄ be an algebraic closure of F . If ↵ 2 O, denote
by E [↵] the kernel of [↵] : E (F̄ ) ! E (F̄ ) and if L is an extension of F contained in F̄ , let E [↵](L) be
the set of points of E [↵] defined over L. Let GF = Gal(F̄/F ). Consider the following exact sequence of
GF -modules

0 ! E [↵] ! E (F̄ )
↵
�! E (F̄ ) ! 0.
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Taking GF -cohomology leads to a long exact sequence, where we only write the first terms

0 ! E [↵](F ) ! E (F )
↵
�! E (F )

�
�! H1(F ,E [↵]) ! H1(F ,E (F̄ ))

↵
�! H1(F ,E (F̄ )),

where we are considering continuous morphisms and � is the connecting morphism

� : E (F ) ! H1(F ,E [↵]), P 7! [� 7! Q�
� Q] for some Q satisfying ↵Q = P .

From this sequence we can obtain the following short exact sequence

0 ! E (F )/↵E (F )
�
�! H1(F ,E [↵]) ! H1(F ,E (F̄ ))[↵] ! 0

(note that H1(F ,E (F̄ )) is an End(E )-module and H1(F ,E (F̄ ))[↵] denotes the ↵-torsion of it).

We will study E (F )/↵E (F ) by studying its image by � in H1(F ,E [↵]) for F a number field containing K .
As we will see, this is easier if F is a local field containing K . This motivates the following: suppose that
F is a number field containing K , fix a prime Q (finite or infinite) of F and regard E as defined over the
completion of F at Q, that from now on will be denoted by FQ (we will use similar notations to denote
completions). Viewing E as an elliptic curve defined over FFQ and repeating the process described above
we obtain the short exact sequence

0 ! E (FQ)/↵E (FQ)
�
�! H1(FQ,E [↵]) ! H1(FQ,E )[↵] ! 0. (2)

Using that F ⇢ FQ, and GF � GFQ , we have the natural map E (F )/↵E (F ) ! E (FQ)/↵E (FQ) and the

restriction maps H1(F ,E [↵])
resQ
��! H1(FQ,E [↵]), H1(F ,E (F ))

resQ
��! H1(FQ,E (FQ)). We can consider

these maps for every prime Q of F to obtain the following commutative diagram

0 E (F )/↵E (F ) H1(F ,E [↵]) H1(F ,E )[↵] 0

0
Q

Q E (FQ)/↵E (FQ)
Q

QH1(FQ,E [↵])
Q

QH1(FQ,E )[↵] 0.

�

�

Instead of studying the image of E (F )/↵E (F ) by �, we will consider a larger group that is easier to
characterize.

Definition 2.1. Let F be a number field containing K and let ↵ 2 O. Define the ↵-Selmer group of E/F as

S↵(E/F ) = {c 2 H1(F ,E [↵]) : resQ(c) 2 �(E (FQ)/↵E (FQ)) for all Q}.

Remark 2.2. One can think of the Selmer group S↵(E/F ) as the smallest group defined by natural local
conditions containing �(E (F )/↵E (F )).

The following proposition explains the relevance of the Selmer group of an elliptic curve.

Proposition 2.3. Let ↵ 2 O. Suppose S↵(E/F ) = 0, then E (F ) is finite.

Proof. By definition of S↵(E/F ), we have the injection E (F )/↵E (F ) ,�! S↵(E/F ). Thus, E (F )/↵E (F ) = 0.
Now the result follows from the Mordell–Weil Theorem (see [5, Ch. VIII, Thm. 4.1] for the statement and
proof of Mordell–Weil Theorem).
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Here and from now on let ↵ = ⇡n. We proceed to study S↵(E/F ). The main point in the following
calculations is noting that the local conditions that appear in the definition of the Selmer group behave
di↵erently depending on whether the prime ideal Q of F divides ↵ or not. We begin studying the primes Q
such that Q - ↵.

Definition 2.4. Define the enlarged Selmer group of ↵ as

S 0
↵(E/F ) = {c 2 H1(F ,E [↵]) : resQ(c) 2 �(E (FQ)/↵E (FQ)) for all Q - ↵}.

Clearly, S↵(E/F ) ⇢ S 0
↵(E/F ).

Theorem 2.5. Suppose E is defined over K and let Kn = K (E [pn]). Then,

S 0
↵(E/K ) ⇠= Hom(Mn/Kn,E [p

n])Gal(Kn/K),

where Mn is the maximal abelian extension of Kn unramified outside primes above p.

Proof. This is done in two steps. First we compute

S 0
↵(E/Kn

) = {c 2 Hom(GKn
,E [pn]) : resQ(c) 2 �(E (Kn,Q)/↵E (Kn,Q) for all Q | ↵},

where we used that GKn
fixes E [pn] and Kn,Q denotes the completion of Kn at the prime Q. Since E has

good reduction at Q (see [1, Thm. 5.7]), the inertia subgroup IQ ⇢ GKn,Q acts trivially on E [pm] for every
m � 1 (see [1, Coroll. 3.17]). Therefore, the connecting morphism factors trough

E (Kn,Q)/↵E (Kn,Q) �! Hom(GKn,Q/IQ,E [p
n]). (3)

By (2) this map is injective and it can be seen that it is an isomorphism by showing that both groups
are isomorphic to O/pn, see [1, Lem. 6.4]. From there it follows that S 0

↵(E/Kn
) ⇠= Hom(Mn/Kn,E [pn]) by

class field theory. The second step of the proof consists on applying [1, Lem. 6.2] to see that the inflation
restriction exact sequence induces the isomorphism S 0

↵(E/K ) ' S 0
↵(E/Kn

)Gal(Kn/K).

We are left with studying the local condition at p. Since p is coprime to f, E has good reduction at p.
Since ordp(p)  2 < p � 1, the logarithm induces an isomorphism logE : E1(Kp)

⇠
�! pOp, where E1(Kp)

is the set of points of E (Kp) that reduce to 0 modulo p. Moreover, since the reduction of E at p has
no p-torsion, E (Kp) = E1(Kp) ⇥ Ẽ (k) and logE can be extended to a map logE : E (Kp) ! Op (see [1,
Lem. 6.6]). By [1, Coroll. 5.20 (iv)], Kn/K is totally ramified at p. For every n � 1, denote Kn,p the
completion of K at the unique prime above p.

Definition 2.6. Define the following Kummer pairing

h , i⇡n : E (Kp)⇥ K⇥
n,p ! E [pn], P , x 7! hP , xi⇡n = Q [x ,Kn,p] � Q,

where Q 2 E (K̄p) is such that ⇡nQ = P and [·,Kn,p] is the local Artin map.

Definition 2.7. For every n � 1, define �n : K
⇥
n,p ! E [pn] by �n(x) = hR , xi⇡n .

Lemma 2.8 ([1, Lem. 6.8]). For every n, the map �n is characterized by the fact that if P 2 E (Kp) and
x 2 K⇥

n,p, we have hP , xi⇡n = (⇡�1 logE (P))�n(x). Moreover, if On,p is the ring of integers of Kn,p, we
have �n(O

⇥
n,p) = E [pn].
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The previous lemma shows that �n is essentially the connecting morphism given in (2). Combining
this lemma with Theorem 2.5 and class field theory yields the following description of S⇡n(E/K ). For every

number field F let A⇥
F
denote the idele group of F .

Theorem 2.9 ([1, Thm. 6.9]). Let Kn = K (E [pn]) with idele group A⇥
Kn
. Define

Wn = K⇥
n

Y

v |1

K⇥
n,v

Y

v -p1
O

⇥
n,v · ker �n.

Then, S⇡n(E/K ) ⇠= Hom(A⇥
Kn
/Wn,E [pn])Gal(Kn/K).

Let � = Gal(K (E [p])/K ). Then, � acts naturally on the O/p-vector space E [p]. Let �E : � ! F⇥
p

be the character of this representation. Let A be the p-part of the ideal class group of K1. Note that�
acts on A in a natural way. For every character � : � ! F⇥

p consider the composition, also denoted by �,
� : � ! Fp ,�! Z⇥

p , where the last morphism is given by Hensel’s Lemma. For a given Z[�]-module M, let

M(p) = M ⌦Z Zp, which is a Zp[�]-module and let M� be the �-isotypical component of M(p). Another
application of class field theory gives the following result.

Corollary 2.10. Consider the same notation as above and suppose that p splits in K. Then, S⇡(E/K ) = 0

if and only if A�E = 0 and �1(O
⇥
K1
) 6= 0.

This characterizes when S⇡(E/K ) = 0 which is the key point to prove the Coates–Wiles Theorem since,
as we explained, S⇡(E/K ) = 0 implies that E (K ) is finite.

3. The Euler system of elliptic units

Let E be an elliptic curve defined over K with complex multiplication by O. Let  be the Hecke character
attached to E with conductor f (see [4, Chap. 2, §9]), viewed as a character on ideals. Choose a prime p
of K not dividing 6f, let p be the rational prime below it and suppose that p splits in K . Fix an ideal a
of O coprime to 6pf. Let R be the set of square free ideals of O coprime to 6fpa. Finally, for n � 0 denote
by Kn = K (E [pn]), if r 2 R denote by Kn(r) = K (E [pnr]) and let Gr = Gal(Kn(r)/Kn). In this section we
introduce the Euler system of elliptic units and we explain how it can be used to bound the size of A�E

defined above. We will work with the following definition of Euler system.

Definition 3.1. An Euler system is a set of global units {⌘(n, r) 2 Kn(r)⇥ | n � 1 and r 2 R} satisfying:

(i) if rq 2 R, where q is a prime ideal of O, NKn(rq)/Kn(r)⌘(n, rq) = ⌘(n, r)(1�Frob�1
q ), and

(ii) if r 2 R and n � 1, NKn+1(r)/Kn(r)⌘(n + 1, r) = ⌘(n, r).

We now construct the so called Euler system of elliptic units. For that we need to introduce the following
rational functions. Fix here and from now on an analytic isomorphism ⇠ : C/L ⇠

�! E (C) where L = ⌦O
and⌦ 2 C.
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Definition 3.2. Choose a Weierstrass equation for E and denote by �(E ) its discriminant. Let � 2 O be
a generator of the ideal a. Define

⇥E ,a = ��12�(E )Na�1
Y

P2E [a]�O

(x � x(P))�6.

Suppose that E is defined over K . Let S 2 E be an O-generator of E [f]. Define

⇤E ,a =
Y

�2Gal(K(f)/K)

⇥E ,a � ⌧S� ,

where ⌧S�(P) = P+S� for every P 2 E and K (f) is the ray class field of K modulo f. Define ⇥L,a = ⇥E ,a�⇠
and⇤ L,a = ⇤E ,a � ⇠.

The system of elliptic units is obtained by evaluating⇤ L,a at certain torsion points of E in the follow-
ing way.

Definition 3.3. Given n � 0 and an integral ideal r 2 R define ⌘(a)n (r) = ⇤E ,a(⇠( (pnr)�1⌦)). The

set {⌘(a)n (r)} for n � 1 and r 2 R is the set of elliptic units.

Proposition 3.4 ([1, Prop. 8.2]). The set {⌘(a)n (r)} for n � 1 and r 2 R is an Euler system.

Here and for the rest of this section we write ⌘(n, r) := ⌘(a)n (r). Fix M a power of p and n � 1. We now
explain how to construct a principal ideal of Kn starting from the unit ⌘(n, r) 2 Kn(r). This construction
will be done only for r in the following subgroup of R.

Definition 3.5. Define Rn,M to be the subset of R with elements r 2 R such that every prime q | r
satisfies:

(i) q splits completely in Kn/K , and

(ii) M | (Nq� 1).

In order to do the construction we will use Kolyvagin’s derivative operator. For every q 2 R prime ideal,
fix �q 2 Gq a generator of the cyclic group Gq.

Definition 3.6. If q 2 R prime, define Dq =
PNq�2

i=1 i�iq 2 Z[Gq]. For an arbitrary ideal r 2 R, define
Dr :=

Q
q|rDq 2 Z[Gr].

Proposition 3.7. Let n � 1, r 2 Rn,M and � 2 Gr. Then, ⌘(n, r)(��1)Dr 2 (Kn(r)⇥)M . Moreover, there
is a natural choice of Mth root of unity, that we will denote by (⌘(n, r)(��1)Dr)1/M .

Proof. See [1, Prop. 8.4]. Note that both Kn and Kn(r) may contain Mth roots of unity. This is the reason
why we need [1, Prop. 8.4 (i)] to specify a choice of an Mth root of ⌘(n, r)(��1)Dr . For that, the so called
universal Euler system is used (see [2, Chap. IV, §2] for more details).

Definition 3.8. Let n � 1, r 2 Rn,M . Define the 1-cocycle c 2 H1(Gr,Kn(r)⇥) as

Gr ! Kn(r)
⇥, c(�) = (⌘(n, r)(��1)Dr)1/M .
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By Hilbert’s Theorem 90 we have that H1(Gr,Kn(r)) = 0, hence there exists � 2 Kn(r)⇥ such that
c(�) = ���1. Raising this equality to the Mth power yields

z =
⌘(xn,r)Dr

�M
2 K⇥

n .

The element � is well defined up to multiplication by an element of Kn. Hence, z is well defined in K⇥
n /(K⇥

n )M .

Definition 3.9. With the same notation used in the previous definition, define

n,M(r) =
⌘(xn,r)Dr

�M
2 K⇥

n /(K⇥
n )M .

Fix n � 1. In order to simplify the notation denote F = Kn and let OF be its ring of integers. We
proceed to write the factorization of the ideal generated by n,M(r) 2 F modulo Mth powers in terms
of n,M(s) for ideals s | r.

Definition 3.10. Denote the group of ideals of F additively as I =
L

Q ZQ, where the sum is over all
prime ideals Q of F . If q is a prime ideal of K , we define Iq =

L
Q|q ZQ. For a given y 2 F , denote

by (y) the principal ideal generated by y , (y)q its projection to Iq, [y ] 2 I/MI the reduction modulo M
and [y ]q the respective projection.

Fix q 2 Rn,M a prime of K . We will construct a function, �q, that will allow us to relate [n,M(r)]q
with the element n,M(rq�1). We start by defining a map

�0q : (OF/qOF )
⇥
! Iq/MIq

that after a small modification will become the desired map. Note that q splits completely in F . Therefore,
we have

(OF/qOF )
⇥ ⇠=

Y

Q|q

(OF/Q)⇥,

where each of the terms in the right hand side is a cyclic group of order Nq� 1. On the other hand

Iq/MIq
⇠= �Q|q(Z/MZ).

Since M | (Nq�1), in order to define a map (OF/qOF )⇥ ! Iq/MIq it is enough to choose a generator of
the cyclic group (OF/Q)⇥ for every Q | q and map it to 1 2 Z/MZ. Now we explain how we choose these
generators. For Q dividing q choose a prime Q0 of F (q) above it and consider ⇡Q a local parameter at the
prime Q0. Since the local field extension F (q)Q0/FQ is totally tamely ramified we have that the map

Gal(F (q)/F ) ! OF (q),Q0
⇥
! (OF/Q)⇥, � 7! ⇡(1��)Q 7! [⇡(1��)Q ] (4)

is a group isomorphism ([3, Chap. IV, Prop. 5]).

Definition 3.11. For Q as above, define �Q 2 (OF/Q)⇥ to be the image of the fixed generator �q 2 Gq

by the map in (4). It is a generator of (OF/Q)⇥.
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Definition 3.12. Define a map �0q : (OF/q)⇥ ! Iq/MIq as follows. Given ↵ 2 (OF/q)⇥ and Q | q, let

aQ(↵) 2 Z be such that ↵ ⌘ �aQ(↵)
Q mod Q. Then define

�0q(↵) =
X

Q|q

(aQ(↵) mod M)Q.

Finally, note that �q factors trough (OF/q)⇥/((OF/q)⇥)M . Define �q = �0q � jq, where jq is the natural

map { 2 F⇥/(F⇥)M : []q = 0} ! (OF/q)⇥/((OF/q)⇥)M . It is plain to see that �q is an isomorphism.

Theorem 3.13 (Factorization Theorem; [1, Prop. 8.10]). Consider n,M(r) and q a prime ideal of K. Then,

(i) if q - r, [n,M(r)]q = 0, and

(ii) if q | r: [n,M(r)]q = �q(n,M(rq�1)).

Here and from now on suppose that F = K1, i.e. n = 1. Note that ⌘(1,O) 2 O
⇥
F

and denote by µF

the subgroup of roots of unity of O⇥
F
. Let C be the Z[�]-submodule of O⇥

F
generated by ⌘(1,O) and µF .

The Factorization Theorem gives the factorization of principal ideals of the form (1,M(r)) modulo M-th
powers. If M is large enough, these factorizations give relations between the classes of the prime ideals
generating A. This allows to give the following bound of the �-isotypical component of A for every irreducible
representation � of �.

Theorem 3.14 ([1, Thm. 9.5]). For every irreducible Zp-representation of � we have #A�  #(O⇥
F
/C)�.

Corollary 3.15. Consider the same notation as above. Suppose that ⌘(1,O)� 62µ�
F
((O⇥

F
)�)p. Then, A� = 0.

4. Complex L-function of E and proof of Coates–
Wiles Theorem

Let E be an elliptic curve defined over K with complex multiplication by O. Let  be the Hecke character
attached to E , viewed as a character on ideals, with conductor f and denote by  ̄ its conjugate. Let
L(E/K , s) be the complex L-function attached to E viewed as an elliptic curve over K . For a given ideal

m such that f | m and k � 1 define Lm( k , s) =
P
 k(b)/Nbs , where the sum is restricted to the ideals b

coprime to m. We similarly define Lm( ̄k , s). The following theorem is due to Deuring.

Theorem 4.1 (Deuring; [4, Thm. 10.5 (a)]). We have L(E/K , s) = Lf( , s)Lf( ̄, s).

Now we proceed to relate elliptic units with Lf( ̄k , s) for k � 1.

Theorem 4.2. For every k � 1,

dk

dzk
log⇤ L,a(z)|z=0 = 12(�1)k(k � 1)!f k(Na�  (a)k)⌦�kLf( ̄

k , k).
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Proof. This proof is done in several steps. First it is possible to relate the kth derivative of log⇥ L,a(z) with
respect to z with the Eisenstein series Ek(z , L) = lims!k

P
!2L0(z̄ + !̄)k/|z + !|2s , where lims!k denotes

evaluation at the analytic continuation. This is done in [1, Thm. 7.13]. Then, [1, Prop. 7.15] shows how to
relate Ek(z , L) with partial sums of Lf( ̄, k). Finally, since log⇤ L,a(z) is a sum of translates of log⇥ L,a(z)
(see Definition 3.2), it is possible to add all partial sums of Lf( ̄, k) to obtain the desired theorem (see [1,
Thm. 7.17]).

Let p be a prime of K above p where E has good reduction and p - 6f. Fix a Weierstrass model
for E with coordinate functions x , y that has good reduction at p and fix a an ideal coprime to 6fp. Let
Ê be the formal group attached to E and let x(Z ) 2 z�2

Op[[Z ]], y(Z ) 2 z�3
Op[[Z ]] be the power series

corresponding to x and y as in [5, Chap. IV, §1]. Let �
Ê
(Z ) 2 Z + Z 2Kp[[Z ]] be the logarithm map of

the formal group Ê (see [5, Chap. IV, §1]) and consider the operator D = 1
�0
E
(Z)

d

dZ
. Denote by K (E ) the

function field of E and by identifying the coordinates (x , y) with (x(Z ), y(Z )) and with (}(z),}0(z)/2),
where } is the Weierstrass }-function. We have the following commutative diagram (see [1, Prop. 7.20]).

K (}(z),}0(z)) K (E ) K (x(Z ), y(Z )) Kp((Z ))

K (}(z),}0(z)) K (E ) K (x(Z ), y(Z )) Kp((Z )).

d

dz
D D

(5)

Theorem 4.3. Denote by ⇤p,a(Z ) 2 Kp((Z )) the image of ⇤E ,a 2 K ((E )) by the map given in (5). Then,
⇤p,a 2 Op[[Z ]]⇥ and for every k � 1

Dk log⇤ p,a(Z )|Z=0 = 12(�1)k�1(k � 1)!f k(Na�  (a)k)⌦�kLf( ̄
k , 1).

Proof. The first statement is proven in [1, Thm. 7.22] while the second one follows from the fact that (5)
is commutative and Theorem 4.2.

Suppose here and from now on that p > 7 and p splits in K . Then, we can suppose that Na 6=  (a)
modulo p (for every p such that p > 7 such an a exists by [1, Lem. 10.2]). Let F = K1 = K (E [p]), which
is totally ramified at p and let P be the unique prime above p. Consider ⌘(1,O) = ⇤L,a( (p)�1⌦) =
⇤p,a(z) 2 O

⇥
F
. Let � : O⇥

FP
! (1+POFP)/(1+P2

OFP) be the natural projection, which is �-equivariant.

Proposition 4.4. Lf(E , 1)/⌦ is integral at p. Moreover, �(⌘(1,O)) = 1 if and only if L( ̄, 1)/⌦ ⌘ 0
mod p. In particular, L( ̄, 1)/⌦ 6⌘ 0 mod p implies that ⌘(1,O)�E 62 ((O⇥

F ,P)
�E )p.

Proof. Let P = ⇠( (p)�1⌦) = (x , y) and z = �x/y . It follows from [1, Lem. 7.3] that z = �y/x 2 OF ,P

has valuation 1 at the prime P. Theorem 4.3 allows to write ⌘(1,O) = ⇤p,a(z) as a power series on z . The
first terms are

⇤p,a(z) = ⇤p,a(0) +⇤ a,a(0)12f (Na�  (a))
Lf( ̄, 1)

⌦
z + O(z2). (6)

Since⇤ p,a(Z ) 2 Op[[Z ]]⇥ we have that⇤ p,a(0) 2 O
⇥
p . Since a is chosen so that Na 6=  (a) modulo p we

have⇤ p,a(0)12f (Na�  (a)) 2 O
⇥
p which shows that Lf( ̄, 1)/⌦ is integral at p.
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To prove the second part of the statement we need to compute the projection of⇤ p,a(z) in (1 +
POF ,P)/(1 +P2

OF ,P). Since ordP(z) = 1, (6) reduces to

⌘(1,O) ⌘ ⇤p,a(0)

✓
1 + 12f (Na�  (a))

Lf( ̄, 1)

⌦
z

◆
mod P2.

Using again that⇤ p,a(0) 2 O
⇥
p and that p is totally ramified in F it follows that �(⇤p,a(0)) = 1. Hence,

�(⌘(1,O)) = 1 + 12f (Na �  (a))L( ̄,1)⌦ z and the second result follows. Finally, the study of the formal

group Ê gives a �-equivariant isomorphism (1 +POFP)/(1 +P2
OFP) ' E [p] (see [1, Lem. 10.4]). From

there we see that �(⌘(1,O)�E ) = �(⌘(1,O))�E = �(⌘(1,O)) 6= 0. Thus ⌘(1,O)�E 62 ((O⇥
F ,P)

�E )p, since

otherwise its image by � would be 1 (because (1 +POFP)/(1 +P2
OFP) is killed by NP = Np | p).

Theorem 4.5. Suppose that L( ̄, 1)/⌦ 6⌘ 0 mod p and that TrK/Q  (p) 6= 1. Let �1 be as in Defini-

tion 2.7. Then, �1(O
⇥
F
) 6= 0.

Proof. By Lemma 2.8 it is enough to see that (O⇥
F
)�E ⇣ (O⇥

F ,P)
�E . For that we make the following

observation. Using the p-adic logarithm we see that (O⇥
F ,P ⌦Zp

Qp)�E is 1-dimensional (recall that �E is

1-dimensional). Moreover, since TrK/Q  (p) 6= 1 it can be seen that µp 6⇢O
⇥
F ,P (see [1, Lem. 10.9 (i)]).

Therefore, (O⇥
F ,P)

�E is free of rank 1 over Zp. Since ⌘(1,O)�E 62 ((O⇥
F ,P)

�E )p by Proposition 4.4,

⌘(1,O)�E 2 O
⇥
F

is a generator of (OF ,P)�E giving the desired surjectivity.

We can finally give the proof of the Coates–Wiles Theorem.

Theorem 4.6 (Coates–Wiles). Suppose that L(E/K , 1) 6= 0. Then E (K ) is finite.

Proof. Theorem 4.1 shows that Lf( ̄, 1) 6= 0. By the Chebotarev Theorem there are infinite primes p of K
above a rational prime p such that p splits in K and TrK/Q  (p) 6= 1. We can choose one such that p > 7,
p coprime to 6f and Lf( ̄, 1)/⌦ is a unit at p.

Therefore we can apply the previous results of this section to p. Since µp 62 FP by [1, Lem. 10.9 (i)],
by Proposition 4.4 and Corollary 3.15, A�E = 0. In addition, Theorem 4.5 shows that �1(O

⇥
F
) 6= 0. The

conditions of Corollary 2.10 are satisfied so we can a�rm S⇡(E/K ) = 0, where ⇡ 2 O such that p = ⇡O.
Therefore E (K )/pE (K ) = 0, by the Mordell–Weil Theorem E (K ) has to be finite (see Proposition 2.3)
and we are done.
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